Suppr超能文献

Na⁺/二羧酸共转运蛋白细胞外环5中对构象敏感的残基。

Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.

作者信息

Pajor Ana M, Randolph Kathleen M

机构信息

Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas 77555-0645, USA.

出版信息

J Biol Chem. 2005 May 13;280(19):18728-35. doi: 10.1074/jbc.M501265200. Epub 2005 Mar 17.

Abstract

The Na+/dicarboxylate co-transporter, NaDC-1, from the kidney and small intestine, transports three sodium ions together with one divalent anion substrate, such as succinate2-. A previous study (Pajor, A. M. (2001) J. Biol. Chem. 276, 29961-29968), identified four amino acids, Ser-478, Ala-480, Ala-481, and Thr-482, near the extracellular end of transmembrane helix (TM) 9 that are likely to form part of the permeation pathway of the transporter. All four cysteine-substituted mutants were sensitive to inhibition by the membrane-impermeant reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate (MTSET) and protected by substrate. In the present study, we continued the cysteine scan through extracellular loop 5 and TM10, from Thr-483 to Val-528. Most cysteine substitutions were well tolerated, although cysteine mutations of some residues, particularly within the TM, produced proteins that were not expressed on the plasma membrane. Six residues in the extracellular loop (Thr-483, Thr-484, Leu-485, Leu-487, Ile-489, and Met-493) were sensitive to chemical labeling by MTSET, depending on the conformational state of the protein. Transport inhibition by MTSET could be prevented by substrate regardless of temperature, suggesting that the likely mechanism of substrate protection is steric hindrance rather than large-scale conformational changes associated with translocation. We conclude that extracellular loop 5 in NaDC-1 appears to have a functional role, and it is likely to be located in or near the substrate translocation pore in the protein. Conformational changes in the protein affect the accessibility of the residues in extracellular loop 5 and provide further evidence of large-scale changes in the structure of NaDC-1 during the transport cycle.

摘要

来自肾脏和小肠的Na⁺/二羧酸盐共转运体NaDC-1,可将三个钠离子与一个二价阴离子底物(如琥珀酸根²⁻)一起转运。先前的一项研究(Pajor, A. M. (2001) J. Biol. Chem. 276, 29961 - 29968)确定了跨膜螺旋(TM)9细胞外末端附近的四个氨基酸,即Ser-478、Ala-480、Ala-481和Thr-482,它们可能构成该转运体渗透途径的一部分。所有四个半胱氨酸取代突变体都对膜不透性试剂[2-(三甲基铵)乙基]-甲硫基磺酸盐(MTSET)的抑制敏感,并受到底物的保护。在本研究中,我们继续对从Thr-483到Val-528的细胞外环5和TM10进行半胱氨酸扫描。大多数半胱氨酸取代都能被很好地耐受,尽管某些残基的半胱氨酸突变,特别是跨膜区内的突变,产生的蛋白质不能在质膜上表达。细胞外环中的六个残基(Thr-483、Thr-484、Leu-485、Leu-487、Ile-489和Met-493)对MTSET的化学标记敏感,这取决于蛋白质的构象状态。无论温度如何,底物都可以防止MTSET对转运的抑制,这表明底物保护的可能机制是空间位阻,而不是与转运相关的大规模构象变化。我们得出结论,NaDC-1中的细胞外环5似乎具有功能作用,并且它可能位于蛋白质中的底物转运孔内或其附近。蛋白质的构象变化会影响细胞外环5中残基的可及性,并为转运循环期间NaDC-1结构的大规模变化提供进一步证据。

相似文献

1
Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.
J Biol Chem. 2005 May 13;280(19):18728-35. doi: 10.1074/jbc.M501265200. Epub 2005 Mar 17.
2
Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter.
J Biol Chem. 2001 Aug 10;276(32):29961-8. doi: 10.1074/jbc.M011387200. Epub 2001 Jun 8.
4
Transmembrane helix 7 in the Na+/dicarboxylate cotransporter 1 is an outer helix that contains residues critical for function.
Biochim Biophys Acta. 2011 Jun;1808(6):1454-61. doi: 10.1016/j.bbamem.2010.11.007. Epub 2010 Nov 10.
7
Role of isoleucine-554 in lithium binding by the Na+/dicarboxylate cotransporter NaDC1.
Biochemistry. 2010 Oct 19;49(41):8937-43. doi: 10.1021/bi100600j.
8
Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway.
J Biol Chem. 2005 Sep 23;280(38):32649-54. doi: 10.1074/jbc.M506723200. Epub 2005 Jul 27.

引用本文的文献

1
Solvent accessibility changes in a Na-dependent C-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism.
J Biol Chem. 2020 Dec 25;295(52):18524-18538. doi: 10.1074/jbc.RA120.013894. Epub 2020 Oct 21.
3
Role of the tryptophan residues in proton-coupled folate transporter (PCFT-SLC46A1) function.
Am J Physiol Cell Physiol. 2016 Jul 1;311(1):C150-7. doi: 10.1152/ajpcell.00084.2016. Epub 2016 Jun 1.
4
Structure-Based Identification of Inhibitors for the SLC13 Family of Na(+)/Dicarboxylate Cotransporters.
Biochemistry. 2015 Aug 11;54(31):4900-8. doi: 10.1021/acs.biochem.5b00388. Epub 2015 Jul 30.
5
Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.
J Biol Chem. 2014 Jun 13;289(24):16998-7008. doi: 10.1074/jbc.M114.554790. Epub 2014 May 7.
6
Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family.
Pflugers Arch. 2014 Jan;466(1):119-30. doi: 10.1007/s00424-013-1369-y. Epub 2013 Oct 10.
7
Functional characterization of SdcF from Bacillus licheniformis, a homolog of the SLC13 Na⁺/dicarboxylate transporters.
J Membr Biol. 2013 Sep;246(9):705-15. doi: 10.1007/s00232-013-9590-3. Epub 2013 Aug 25.
8
Identification of a functionally critical GXXG motif and its relationship to the folate binding site of the proton-coupled folate transporter (PCFT-SLC46A1).
Am J Physiol Cell Physiol. 2012 Sep 15;303(6):C673-81. doi: 10.1152/ajpcell.00123.2012. Epub 2012 Jul 11.
9
Transmembrane helix 7 in the Na+/dicarboxylate cotransporter 1 is an outer helix that contains residues critical for function.
Biochim Biophys Acta. 2011 Jun;1808(6):1454-61. doi: 10.1016/j.bbamem.2010.11.007. Epub 2010 Nov 10.
10
Role of isoleucine-554 in lithium binding by the Na+/dicarboxylate cotransporter NaDC1.
Biochemistry. 2010 Oct 19;49(41):8937-43. doi: 10.1021/bi100600j.

本文引用的文献

1
Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors.
Nature. 2004 May 13;429(6988):188-93. doi: 10.1038/nature02488.
2
The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.
Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11122-6. doi: 10.1073/pnas.1832002100. Epub 2003 Aug 28.
4
The SLC13 gene family of sodium sulphate/carboxylate cotransporters.
Pflugers Arch. 2004 Feb;447(5):594-602. doi: 10.1007/s00424-003-1128-6. Epub 2003 Aug 12.
6
Mutagenesis of the N-glycosylation site of hNaSi-1 reduces transport activity.
Am J Physiol Cell Physiol. 2003 Nov;285(5):C1188-96. doi: 10.1152/ajpcell.00162.2003. Epub 2003 Jul 16.
7
A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates.
J Biol Chem. 2002 Aug 16;277(33):29847-55. doi: 10.1074/jbc.M202508200. Epub 2002 May 15.
8
Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1.
J Biol Chem. 2002 Jul 19;277(29):26074-80. doi: 10.1074/jbc.M202248200. Epub 2002 May 6.
9
Flexible regions within the membrane-embedded portions of polytopic membrane proteins.
Biochemistry. 2002 Mar 26;41(12):3852-4. doi: 10.1021/bi011918l.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验