Suppr超能文献

一氧化氮信号传导:昆虫大脑与发光细胞

Nitric oxide signalling: insect brains and photocytes.

作者信息

Trimmer Barry A, Aprille June, Modica-Napolitano Josephine

机构信息

Department of Biology, Tufts University, Medford, MA 02155, USA.

出版信息

Biochem Soc Symp. 2004(71):65-83. doi: 10.1042/bss0710065.

Abstract

The success of insects arises partly from extraordinary biochemical and physiological specializations. For example, most species lack glutathione peroxidase, glutathione reductase and respiratory-gas transport proteins and thus allow oxygen to diffuse directly into cells. To counter the increased potential for oxidative damage, insect tissues rely on the indirect protection of the thioredoxin reductase pathway to maintain redox homoeostasis. Such specializations must impact on the control of reactive oxygen species and free radicals such as the signalling molecule NO. This chapter focuses on NO signalling in the insect central nervous system and in the light-producing lantern of the firefly. It is shown that neural NO production is coupled to both muscarinic and nicotinic acetylcholine receptors. The NO-mediated increase in cGMP evokes changes in spike activity of neurons controlling the gut and body wall musculature. In addition, maps of NO-producing and -responsive neurons make insects useful models for establishing the range and specificity of NO's actions in the central nervous system. The firefly lantern also provides insight into the interplay of tissue anatomy and cellular biochemistry in NO signalling. In the lantern, nitric oxide synthase is expressed in tracheal end cells that are interposed between neuron terminals and photocytes. Exogenous NO can activate light production and NO scavengers block evoked flashes. NO inhibits respiration in isolated lantern mitochondria and this can be reversed by bright light. It is proposed that NO controls flashes by transiently inhibiting oxygen consumption and permitting direct oxidation of activated luciferin. It is possible that light production itself contributes to the restoration of mitochondrial activity and consequent cessation of the flash.

摘要

昆虫的成功部分源于其非凡的生化和生理特化。例如,大多数昆虫物种缺乏谷胱甘肽过氧化物酶、谷胱甘肽还原酶和呼吸气体运输蛋白,因此允许氧气直接扩散到细胞中。为了应对氧化损伤增加的可能性,昆虫组织依靠硫氧还蛋白还原酶途径的间接保护来维持氧化还原稳态。这种特化必然会影响活性氧和自由基(如信号分子一氧化氮)的控制。本章重点关注昆虫中枢神经系统和萤火虫发光器官中的一氧化氮信号传导。研究表明,神经一氧化氮的产生与毒蕈碱型和烟碱型乙酰胆碱受体均相关。一氧化氮介导的环鸟苷酸增加会引起控制肠道和体壁肌肉组织的神经元的峰活动变化。此外,产生一氧化氮和对一氧化氮有反应的神经元图谱使昆虫成为建立一氧化氮在中枢神经系统中作用范围和特异性的有用模型。萤火虫发光器官也为一氧化氮信号传导中组织解剖学和细胞生物化学的相互作用提供了见解。在发光器官中,一氧化氮合酶在介于神经元末端和发光细胞之间的气管终端细胞中表达。外源性一氧化氮可激活发光,一氧化氮清除剂可阻断诱发的闪光。一氧化氮抑制分离的发光器官线粒体中的呼吸作用,而强光可逆转这种抑制作用。有人提出,一氧化氮通过暂时抑制氧气消耗并允许活化的荧光素直接氧化来控制闪光。发光本身可能有助于线粒体活性的恢复以及随后闪光的停止。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验