Malek S A, Adorante J S, Stys P K
Division of Neuroscience, University of Ottawa, Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, ON, Canada K1Y 4K9.
Brain Res. 2005 Mar 10;1037(1-2):171-9. doi: 10.1016/j.brainres.2005.01.003.
Na(+)-K(+)-ATPase pump failure during either anoxia or ouabain perfusion induces rapid axonal depolarization by dissipating ionic gradients. In this study, we examined the interplay between cation and anion transporting pathways mediating axonal depolarization during anoxia or selective Na(+)-K(+)-ATPase inhibition. Compound resting membrane (V(m)) potential of rat optic nerve was measured in a grease gap at 37 degrees C. Chemical anoxia (2 mM NaCN or NaN(3)) or ouabain (1 mM) caused a loss of resting potential to 42 +/- 11% and 47 +/- 2% of control after 30 min, respectively. Voltage-gated Na(+)-channel blockade was partially effective in abolishing this depolarization. TTX (1 microM) reduced depolarization to 73 +/- 10% (chemical anoxia) and 68 +/- 4% (ouabain) of control. Quaternary amine Na(+) channel blockers QX-314 (1 mM) or prajmaline (100 microM) produced similar results. Residual ionic rundown largely representing co-efflux of K(+) and Cl(-) during chemical anoxia in the presence of Na(+)-channel blockade was further spared with DIDS (500 microM), a broad-spectrum anion transport inhibitor (95 +/- 8% of control after 30 min in anoxia + TTX vs. 73 +/- 10% in TTX alone). Addition of DIDS was slightly more effective than TTX alone in ouabain (74 +/- 5% DIDS + TTX vs. 68 +/- 4% in TTX alone, P < 0.05). Additional Na(+)-entry pathways such as the Na-K-Cl cotransporter were examined using bumetanide, which produced a modest albeit significant sparing of V(m) during ouabain-induced depolarization. Although cation-transporting pathways play the more important role in mediating pathological depolarization of central axons, anion-coupled transporters also contribute to a significant, albeit more minor, degree.
在缺氧或哇巴因灌注过程中,钠钾ATP酶泵功能衰竭会通过消耗离子梯度导致轴突快速去极化。在本研究中,我们研究了在缺氧或选择性抑制钠钾ATP酶期间介导轴突去极化的阳离子和阴离子转运途径之间的相互作用。在37℃的油脂间隙中测量大鼠视神经的复合静息膜电位(V(m))。化学性缺氧(2 mM NaCN或NaN(3))或哇巴因(1 mM)分别在30分钟后使静息电位丧失至对照的42±11%和47±2%。电压门控钠通道阻滞剂在消除这种去极化方面部分有效。TTX(1 μM)将去极化降低至对照的73±10%(化学性缺氧)和68±4%(哇巴因)。季铵类钠通道阻滞剂QX - 314(1 mM)或普拉马林(100 μM)产生了类似的结果。在存在钠通道阻滞剂的情况下,化学性缺氧期间主要代表钾离子和氯离子共同外流的残余离子减少,在使用广谱阴离子转运抑制剂DIDS(500 μM)时进一步得到缓解(缺氧 + TTX处理30分钟后为对照的95±8%,而单独使用TTX时为73±10%)。在哇巴因处理中,添加DIDS比单独使用TTX稍微更有效(DIDS + TTX为74±5%,单独使用TTX为68±4%,P < 0.05)。使用布美他尼检查了额外的钠进入途径,如钠 - 钾 - 氯共转运体,其在哇巴因诱导的去极化过程中对V(m)有适度但显著的保护作用。尽管阳离子转运途径在介导中枢轴突的病理性去极化中起更重要的作用,但阴离子偶联转运体也在相当程度上(尽管较小)起作用。