Kostyukova Alla S, Rapp Brian A, Choy Andy, Greenfield Norma J, Hitchcock-DeGregori Sarah E
Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
Biochemistry. 2005 Mar 29;44(12):4905-10. doi: 10.1021/bi047468p.
Regulation of actin filament dynamics underlies many cellular functions. Tropomodulin together with tropomyosin can cap the pointed, slowly polymerizing, filament end, inhibiting addition or loss of actin monomers. Tropomodulin has an unstructured N-terminal region that binds tropomyosin and a folded C-terminal domain with six leucine-rich repeats. Of tropomodulin 1's 359 amino acids, an N-terminal fragment (Tmod1(1)(-)(92)) suffices for in vitro function, even though the C-terminal domain can weakly cap filaments independent of tropomyosin. Except for one short alpha-helix with coiled coil propensity (residues 24-35), the Tmod1(1)(-)(92) solution structure shows that the fragment is disordered and highly flexible. On the basis of the solution structure and predicted secondary structure, we have introduced a series of mutations to determine the structural requirements for tropomyosin binding (using native gels and CD) and filament capping (by measuring actin polymerization using pyrene fluorescence). Tmod1(1)(-)(92) fragments with mutations of an interface hydrophobic residue, L27G and L27E, designed to destroy the alpha-helix or coiled coil propensity, lost binding ability to tropomyosin but retained partial capping function in the presence of tropomyosin. Replacement of a flexible region with alpha-helical residues (residues 59-61 mutated to Ala) had no effect on tropomyosin binding but inhibited the capping function. A mutation in a region predicted to be an amphipathic helix (residues 65-75), L71D, destroyed the capping function. The results suggest that molecular flexibility and binding to actin via an amphipathic helix are both required for tropomyosin-dependent capping of the pointed end of the actin filament.
肌动蛋白丝动力学的调节是许多细胞功能的基础。原肌球蛋白调节蛋白与原肌球蛋白一起可以封闭肌动蛋白丝的尖端,即缓慢聚合的丝末端,抑制肌动蛋白单体的添加或丢失。原肌球蛋白调节蛋白有一个与原肌球蛋白结合的无结构N端区域和一个具有六个富含亮氨酸重复序列的折叠C端结构域。尽管原肌球蛋白调节蛋白1的359个氨基酸中的C端结构域可以独立于原肌球蛋白微弱地封闭丝,但N端片段(Tmod1(1)(-)(92))就足以实现体外功能。除了一个具有卷曲螺旋倾向的短α螺旋(残基24 - 35)外,Tmod1(1)(-)(92)的溶液结构表明该片段是无序的且高度灵活。基于溶液结构和预测的二级结构,我们引入了一系列突变来确定原肌球蛋白结合(使用天然凝胶和圆二色性)和丝封闭(通过使用芘荧光测量肌动蛋白聚合)的结构要求。具有界面疏水残基L27G和L27E突变的Tmod1(1)(-)(92)片段,旨在破坏α螺旋或卷曲螺旋倾向,失去了与原肌球蛋白的结合能力,但在有原肌球蛋白存在时保留了部分封闭功能。用α螺旋残基替换一个柔性区域(残基59 - 61突变为丙氨酸)对原肌球蛋白结合没有影响,但抑制了封闭功能。预测为两亲性螺旋的区域(残基65 - 75)中的一个突变L71D破坏了封闭功能。结果表明,分子灵活性以及通过两亲性螺旋与肌动蛋白结合对于原肌球蛋白依赖的肌动蛋白丝尖端封闭都是必需的。
Biochemistry. 2005-3-29
J Biol Chem. 2003-10-10
Soc Gen Physiol Ser. 1997
Arch Biochem Biophys. 2000-6-1
J Mol Biol. 2007-9-21
J Biol Chem. 2004-2-13
Front Endocrinol (Lausanne). 2021
Prog Mol Biol Transl Sci. 2019-4-13
Front Mol Neurosci. 2018-10-9
Arch Biochem Biophys. 2017-9-15
Mol Cell Neurosci. 2017-4-19
Mol Biol Cell. 2016-8-15