Kobelev Vladimir, Schweizer Kenneth S
Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021401. doi: 10.1103/PhysRevE.71.021401. Epub 2005 Feb 2.
A microscopic theory for the dependence on external strain, stress, and shear rate of the transient localization length, elastic modulus, alpha relaxation time, shear viscosity, and other dynamic properties of glassy colloidal suspensions is formulated and numerically applied. The approach is built on entropic barrier hopping as the elementary physical process. The concept of an ideal glass transition plays no role, and dynamical slowing down is a continuous, albeit precipitous, process with increasing colloid volume fraction. The relative roles of mechanically driven motion versus thermally activated barrier hopping and transport have been studied. Various scaling behaviors are found for the relaxation time and shear viscosity in both the controlled stress and shear rate mode of rheological experiments. Apparent power law and/or exponential dependences of the elastic modulus and perturbative and absolute yield stresses on colloid volume fraction are predicted. A nonmonotonic dependence of the absolute yield strain on volume fraction is also found. Qualitative and quantitative comparisons of calculations with experiments on high volume fraction glassy colloidal suspensions show encouraging agreement, and multiple testable predictions are made. The theory is generalizable to treat nonlinear rheological phenomena in other soft glassy complex fluids including depletion gels.
建立了一个微观理论,用于阐述玻璃态胶体悬浮液的瞬态局域化长度、弹性模量、α弛豫时间、剪切粘度以及其他动态特性对外加应变、应力和剪切速率的依赖性,并进行了数值应用。该方法基于熵垒跳跃作为基本物理过程。理想玻璃转变的概念并不起作用,并且随着胶体体积分数的增加,动力学减速是一个连续的过程,尽管很急剧。研究了机械驱动运动与热激活势垒跳跃及输运的相对作用。在流变实验的控制应力和剪切速率模式下,发现了弛豫时间和剪切粘度的各种标度行为。预测了弹性模量、微扰屈服应力和绝对屈服应力对胶体体积分数的表观幂律和/或指数依赖性。还发现了绝对屈服应变对体积分数的非单调依赖性。对高体积分数玻璃态胶体悬浮液的计算与实验进行的定性和定量比较显示出令人鼓舞的一致性,并做出了多个可检验的预测。该理论可推广用于处理包括耗尽凝胶在内的其他软玻璃态复杂流体中的非线性流变现象。