Zolotarev Iu A, Dadaian A K, Borisov Iu A
Bioorg Khim. 2005 Jan-Feb;31(1):3-21. doi: 10.1007/s11171-005-0001-0.
We summarize here information on the theoretical and experimental study of high-temperature (150-200 degrees C) solid phase catalytic isotope exchange (HTSPCIE) carried out with amino acids, peptides, and proteins under the action of spillover hydrogen. Main specific features of the HTSPCIE reaction, its mechanism, and its use for studying spatial interactions in polypeptides are discussed. A virtually complete absence of racemization makes this reaction a valuable preparative method. The main regularities of the HTSPCIE reaction with the participation of spillover tritium have been revealed in the case of peptides and proteins, and the dependence of reactivity of peptide fragments on the spatial organization of their molecules has been studied. An important peculiarity of this reaction is that HTSPCIE proceeds at 150-200 degrees C with a high degree of chirality retention in amino acids and peptides. This is provided by its reaction mechanism, which consists in a synchronous one-center substitution at the saturated carbon atom characterized by the formation of pentacoordinated carbon and a three-center bond between the carbon and the incoming and outgoing hydrogen atoms.