Rüsch Dirk, Forman Stuart A
Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA.
Anesthesiology. 2005 Apr;102(4):783-92. doi: 10.1097/00000542-200504000-00014.
Classic benzodiazepine agonists induce their clinical effects by binding to a site on gamma-aminobutyric acid type A (GABAA) receptors and enhancing receptor activity. There are conflicting data regarding whether the benzodiazepine site is allosterically coupled to gamma-aminobutyric acid binding versus the channel open-close (gating) equilibrium. The authors tested the hypothesis that benzodiazepine site ligands modulate alpha1beta2gamma2L GABAA receptor gating both in the absence of orthosteric agonists and when the orthosteric sites are occupied.
GABAA receptors were recombinantly expressed in Xenopus oocytes and studied using two-microelectrode voltage clamp electrophysiology. To test gating effects in the absence of orthosteric agonist, the authors used spontaneously active GABAA receptors containing a leucine-to-threonine mutation at residue 264 on the alpha1 subunit. To examine effects on gating when orthosteric sites were fully occupied, they activated wild-type receptors with high concentrations of a partial agonist, piperidine-4-sulfonic acid.
In the absence of orthosteric agonists, the channel activity of alpha1L264Tbeta2gamma2L receptors was increased by diazepam and midazolam and reduced by the inverse benzodiazepine agonist FG7142. Flumazenil displayed very weak agonism and blocked midazolam from further activating mutant channels. In wild-type receptors activated with saturating concentrations of piperidine-4-sulfonic acid, midazolam increased maximal efficacy.
Independent of orthosteric site occupancy, classic benzodiazepines modulate the gating equilibrium in alpha1beta2gamma2L GABAA receptors and are therefore allosteric coagonists. A Monod-Wyman-Changeux coagonist gating model quantitatively predicts these effects, suggesting that benzodiazepines minimally alter orthosteric ligand binding.
经典苯二氮䓬类激动剂通过与γ-氨基丁酸A型(GABAA)受体上的一个位点结合并增强受体活性来产生临床效应。关于苯二氮䓬类位点是与γ-氨基丁酸结合变构偶联还是与通道开闭(门控)平衡变构偶联,存在相互矛盾的数据。作者检验了这样一个假设,即苯二氮䓬类位点配体在没有正构激动剂时以及正构位点被占据时均能调节α1β2γ2L GABAA受体的门控。
GABAA受体在非洲爪蟾卵母细胞中重组表达,并使用双微电极电压钳电生理学进行研究。为了测试在没有正构激动剂时的门控效应,作者使用了在α1亚基第264位残基处含有亮氨酸到苏氨酸突变的自发活性GABAA受体。为了研究正构位点被完全占据时对门控的影响,他们用高浓度的部分激动剂哌啶-4-磺酸激活野生型受体。
在没有正构激动剂时,地西泮和咪达唑仑增加了α1L264Tβ2γ2L受体的通道活性,而反向苯二氮䓬类激动剂FG7142则降低了该活性。氟马西尼表现出非常弱的激动作用,并阻止咪达唑仑进一步激活突变通道。在用饱和浓度的哌啶-4-磺酸激活的野生型受体中,咪达唑仑增加了最大效能。
与正构位点占据情况无关,经典苯二氮䓬类药物调节α1β2γ2L GABAA受体的门控平衡,因此是变构协同激动剂。一个莫诺德-怀曼-尚热协同激动剂门控模型定量地预测了这些效应,表明苯二氮䓬类药物对正构配体结合的影响最小。