Nagy Péter, Fischer Andreas, Glaser Julius, Ilyukhin Andrey, Maliarik Mikhail, Tóth Imre
Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen Pf. 21, Hungary.
Inorg Chem. 2005 Apr 4;44(7):2347-57. doi: 10.1021/ic0485918.
Thallium(III) oxide can be dissolved in water in the presence of strongly complexing cyanide ions. Tl(III) is leached from its oxide both by aqueous solutions of hydrogen cyanide and by alkali-metal cyanides. The dominating cyano complex of thallium(III) obtained by dissolution of Tl2O3 in HCN is [Tl(CN)3(aq)] as shown by 205Tl NMR. The Tl(CN)3 species has been selectively extracted into diethyl ether from aqueous solution with the ratio CN-/Tl(III) = 3. When aqueous solutions of the MCN (M = Na+, K+) salts are used to dissolve thallium(III) oxide, the equilibrium in liquid phase is fully shifted to the [Tl(CN)4]- complex. The Tl(CN)3 and Tl(CN)4- species have for the first time been synthesized in the solid state as Tl(CN)3.H2O (1), M[Tl(CN)4] (M = Tl (2) and K (3)), and Na[Tl(CN)4].3H2O (4) salts, and their structures have been determined by single-crystal X-ray diffraction. In the crystal structure of 1, the thallium(III) ion has a trigonal bipyramidal coordination with three cyanide ions in the equatorial plane, while an oxygen atom of the water molecule and a nitrogen atom from a cyanide ligand, attached to a neighboring thallium complex, form a linear O-Tl-N fragment. In the three compounds of the tetracyano-thallium(III) complex, 2-4, the [Tl(CN)4]- unit has a distorted tetrahedral geometry. Along with the acidic leaching (enhanced by Tl(III)-CN- complex formation), an effective reductive dissolution of the thallium(III) oxide can also take place in the Tl2O3-HCN-H2O system yielding thallium(I), while hydrogen cyanide is oxidized to cyanogen. The latter is hydrolyzed in aqueous solution giving rise to a number of products including (CONH2)2, NCO-, and NH4+ detected by 14N NMR. The crystalline compounds, Tl(I)[Tl(III)(CN)4], Tl(I)2C2O4, and (CONH2)2, have been obtained as products of the redox reactions in the system.
在存在强络合氰离子的情况下,三氧化二铊可溶于水。铊(III)可通过氰化氢水溶液和碱金属氰化物从其氧化物中浸出。通过205Tl核磁共振显示,Tl2O3溶解在HCN中得到的铊(III)的主要氰基络合物是[Tl(CN)3(aq)]。当CN-/Tl(III) = 3时,Tl(CN)3物种已从水溶液中选择性萃取到乙醚中。当使用MCN(M = Na+、K+)盐的水溶液溶解三氧化二铊时,液相中的平衡完全转移到[Tl(CN)4]-络合物。首次以Tl(CN)3·H2O (1)、M[Tl(CN)4](M = Tl (2) 和K (3))以及Na[Tl(CN)4]·3H2O (4)盐的形式在固态中合成了Tl(CN)3和Tl(CN)4-物种,并通过单晶X射线衍射确定了它们的结构。在1的晶体结构中,铊(III)离子具有三角双锥配位,赤道平面上有三个氰离子,而水分子的一个氧原子和来自相邻铊络合物的氰配体的一个氮原子形成线性O-Tl-N片段。在四氰基铊(III)络合物的三种化合物2 - 4中,[Tl(CN)4]-单元具有扭曲的四面体几何形状。除了酸性浸出(通过Tl(III)-CN-络合物的形成而增强)外,在Tl2O3 - HCN - H2O体系中还会发生三氧化二铊的有效还原溶解,生成铊(I),同时氰化氢氧化为氰。后者在水溶液中水解,产生许多产物,包括通过14N核磁共振检测到的(CONH2)2、NCO-和NH4+。已获得晶体化合物Tl(I)[Tl(III)(CN)4]、Tl(I)2C2O4和(CONH2)2作为该体系中氧化还原反应的产物。