Suppr超能文献

用于检测影响复杂疾病的多个基因座的全基因组策略。

Genome-wide strategies for detecting multiple loci that influence complex diseases.

作者信息

Marchini Jonathan, Donnelly Peter, Cardon Lon R

机构信息

Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.

出版信息

Nat Genet. 2005 Apr;37(4):413-7. doi: 10.1038/ng1537. Epub 2005 Mar 27.

Abstract

After nearly 10 years of intense academic and commercial research effort, large genome-wide association studies for common complex diseases are now imminent. Although these conditions involve a complex relationship between genotype and phenotype, including interactions between unlinked loci, the prevailing strategies for analysis of such studies focus on the locus-by-locus paradigm. Here we consider analytical methods that explicitly look for statistical interactions between loci. We show first that they are computationally feasible, even for studies of hundreds of thousands of loci, and second that even with a conservative correction for multiple testing, they can be more powerful than traditional analyses under a range of models for interlocus interactions. We also show that plausible variations across populations in allele frequencies among interacting loci can markedly affect the power to detect their marginal effects, which may account in part for the well-known difficulties in replicating association results. These results suggest that searching for interactions among genetic loci can be fruitfully incorporated into analysis strategies for genome-wide association studies.

摘要

经过近10年的高强度学术和商业研究努力,针对常见复杂疾病的大规模全基因组关联研究即将展开。尽管这些疾病涉及基因型与表型之间的复杂关系,包括非连锁基因座之间的相互作用,但此类研究的主流分析策略集中在逐个基因座的模式上。在此,我们考虑明确寻找基因座之间统计相互作用的分析方法。我们首先表明,即使对于研究数十万个基因座的情况,这些方法在计算上也是可行的;其次表明,即使经过保守的多重检验校正,在一系列基因座间相互作用模型下,它们也可能比传统分析更具效力。我们还表明,相互作用基因座间等位基因频率在不同人群中的合理差异可能会显著影响检测其边际效应的效力,这可能部分解释了在重复关联结果时众所周知的困难。这些结果表明,寻找基因座之间的相互作用可以有效地纳入全基因组关联研究的分析策略中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验