Ling Ke-Qing, Sayre Lawrence M
Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
J Am Chem Soc. 2005 Apr 6;127(13):4777-84. doi: 10.1021/ja0455603.
The consensus mechanism for biogenesis of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor in copper amine oxidases involves a key water addition to the dopaquinone intermediate. Although hydration of o-quinones seems straightforward and was implicated previously in aqueous autoxidation of catechols to give ultimately hydroxyquinones, a recent study (Mandal, S.; Lee, Y.; Purdy, M. M.; Sayre, L. M. J. Am. Chem. Soc. 2000, 122, 3574-3584) showed that the observed hydroxyquinones arise not from hydration, but from addition to the o-quinones of H(2)O(2) generated during autoxidation of the catechols. In the enzyme case, hydration of dopaquinone is proposed to be mediated by the active site Cu(II). To establish precedent for this mechanism, we engineered a catechol tethered to a Cu(II)-coordinating unit, such that the corresponding o-quinone could be generated in situ by oxidation with periodate (to avoid generation of H(2)O(2)). Thus, coordination of 4-((2-(bis(2-pyridylmethyl)amino)ethylamino)methyl)-1,2-benzenediol (1) to Cu(II) and subsequent addition of periodate resulted in rapid formation of the TPQ-like corresponding hydroxyquinone. Hydroxyquinone formation was seen also using Zn(II) and Ni(II), but not in the absence of M(II). Under the same conditions, periodate oxidation of the simple catechol 4-tert-butylcatechol does not give hydroxyquinone in the presence or absence of Cu(II). M(II)OH(2) pK(a) data for the Cu(II), Zn(II), and Ni(II) complexes with the pendant tetradentate ligand in the masked (dimethyl ether) catechol form, and kinetic pH-rate profiles of the metal-dependent hydroxyquinone formation from periodate oxidation of catechol 1, suggested a rate-limiting addition step of the ligand-coordinated M(II)OH to the o-quinone intermediate. This study represents the first chemical demonstration of a true o-quinone hydration, which occurs in cofactor biogenesis in copper amine oxidases.
铜胺氧化酶中2,4,5-三羟基苯丙氨酸醌(TPQ)辅因子生物合成的共识机制涉及向多巴醌中间体关键添加水。虽然邻醌的水合似乎很简单,并且之前被认为参与了儿茶酚在水中的自氧化最终生成羟基醌,但最近的一项研究(曼达尔,S.;李,Y.;珀迪,M.M.;塞尔,L.M.《美国化学会志》2000年,122卷,3574 - 3584页)表明,观察到的羟基醌并非来自水合,而是来自儿茶酚自氧化过程中生成的H₂O₂加成到邻醌上。在酶的情况下,多巴醌的水合作用被认为是由活性位点的Cu(II)介导的。为了确立这种机制的先例,我们设计了一种连接到Cu(II)配位单元上的儿茶酚,使得相应的邻醌可以通过高碘酸盐氧化原位生成(以避免生成H₂O₂)。因此,4 - ((2 - (双(2 - 吡啶甲基)氨基)乙氨基)甲基)-1,2 - 苯二酚(1)与Cu(II)配位,随后加入高碘酸盐,导致快速形成类似TPQ的相应羟基醌。使用Zn(II)和Ni(II)时也观察到了羟基醌的形成,但在没有M(II)的情况下则没有。在相同条件下,简单儿茶酚4 - 叔丁基儿茶酚在有或没有Cu(II)存在时,高碘酸盐氧化都不会生成羟基醌。Cu(II)、Zn(II)和Ni(II)与带有侧链四齿配体的掩蔽(二甲醚)儿茶酚形式的配合物的M(II)OH₂ pKₐ数据,以及儿茶酚1高碘酸盐氧化生成金属依赖性羟基醌的动力学pH - 速率曲线,表明配体配位的M(II)OH向邻醌中间体的加成步骤是限速步骤。这项研究首次通过化学方法证明了真正的邻醌水合作用,这种作用发生在铜胺氧化酶的辅因子生物合成过程中。