Seo Min-Kang, Park Soo-Jin, Lee Sang-Kwan
Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusong, Daejeon 305-600, South Korea.
J Colloid Interface Sci. 2005 May 1;285(1):306-13. doi: 10.1016/j.jcis.2004.10.068.
Vapor-grown graphite nanofibers (GNFs) were modified by plasma treatments using low-pressure plasmas with different gases (Ar gas only and/or Ar/O2 gases), flow rates, pressures, and powers. Surface characterizations and morphologies of the GNFs after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS), contact angle, titration, and transmission electron microscopy (TEM) measurements. Also, the investigation of thermomechanical behavior and impact strengths of the GNFs/epoxy composites was performed by dynamic-mechanical thermal analysis (DMTA) and Izod impact testing, respectively. The plasma treatment of the fibers changed the surface morphologies by forming a layer with a thickness on the order of 1 nm, mainly consisting of oxygen functional groups such as hydroxyl, carbonyl, and carboxyl groups. After functionalization of the complete surfaces, further plasma treatment did not enhance the superficial oxygen content but slightly changed the portions of the functional groups. Also, the composites with plasma-treated GNFs showed an increase in T(g) and impact strength compared to the composites containing the same amount of plasma-untreated GNFs.
采用不同气体(仅氩气和/或氩气/氧气)、流速、压力和功率的低压等离子体对气相生长石墨纳米纤维(GNFs)进行等离子体处理改性。通过X射线光电子能谱(XPS)、接触角、滴定和透射电子显微镜(TEM)测量对等离子体处理后的GNFs的表面特性和形态进行了研究。此外,分别通过动态热机械分析(DMTA)和悬臂梁冲击试验对GNFs/环氧树脂复合材料的热机械行为和冲击强度进行了研究。纤维的等离子体处理通过形成一层厚度约为1nm的层改变了表面形态,该层主要由羟基、羰基和羧基等氧官能团组成。在整个表面功能化后,进一步的等离子体处理并没有提高表面氧含量,但略微改变了官能团的比例。此外,与含有相同数量未经过等离子体处理的GNFs的复合材料相比,经过等离子体处理的GNFs的复合材料的玻璃化转变温度(T(g))和冲击强度有所提高。