Dong R G, Wu J Z, McDowell T W, Welcome D E, Schopper A W
Engineering and Control Technology Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, MS 2201, Morgantown, WV 26505, USA.
J Biomech. 2005 May;38(5):1165-75. doi: 10.1016/j.jbiomech.2004.05.021.
A comprehensive understanding of the complex biodynamic response of the human fingers-hand-arm system may help researchers determine the causation of injuries arising from hand-transmitted vibration. This study theoretically demonstrates that the mechanical impedance (MI) in a hand power grip, as a measure of the biodynamic response of the system, can be divided into finger MI and palm MI. A methodology is developed to measure them separately and to investigate their distribution characteristics. This study involves 6 adult male subjects, constant-velocity sinusoidal excitations at 10 different discrete frequencies (16, 25, 40, 63, 100, 160, 250, 400, 630, 1000 Hz), and three different hand-handle coupling conditions. Our results suggest that at low frequencies (40 Hz), the palm MI is substantially higher than the finger MI; the majority of the hand MI remains distributed at the palm up to 100 Hz; and at frequencies higher than 160 Hz, the finger MI is comparable to or higher than the palm MI. Furthermore, at frequencies equal to or above 100 Hz, the finger MI is practically independent of the palm-handle coupling conditions. Knowledge of the MI distribution pattern may increase the understanding of vibration transmission to the hand and aid in the development of effective isolation devices.
全面了解人类手指 - 手部 - 手臂系统复杂的生物动力学响应,可能有助于研究人员确定由手部传递振动引起的损伤原因。本研究从理论上证明,手部强力握持时的机械阻抗(MI)作为该系统生物动力学响应的一种度量,可以分为手指MI和手掌MI。开发了一种方法来分别测量它们并研究其分布特性。本研究涉及6名成年男性受试者、10个不同离散频率(16、25、40、63、100、160、250、400、630、1000Hz)的恒速正弦激励以及三种不同的手 - 手柄耦合条件。我们的结果表明,在低频(40Hz)时,手掌MI显著高于手指MI;在高达100Hz时,大部分手部MI仍分布在手掌;而在高于160Hz的频率下,手指MI与手掌MI相当或更高。此外,在等于或高于100Hz的频率下,手指MI实际上与手掌 - 手柄耦合条件无关。了解MI分布模式可能会增进对振动传递到手部的理解,并有助于开发有效的隔离装置。