Suppr超能文献

一种用于cDNA微阵列数据空间和强度依赖性归一化的强大神经网络方法。

A robust neural networks approach for spatial and intensity-dependent normalization of cDNA microarray data.

作者信息

Tarca A L, Cooke J E K, Mackay J

机构信息

Research Center in Forest Biology, Department of Wood and Forest Science, Laval University, Sainte-Foy (QC), Canada G1K-7P4.

出版信息

Bioinformatics. 2005 Jun 1;21(11):2674-83. doi: 10.1093/bioinformatics/bti397. Epub 2005 Mar 29.

Abstract

MOTIVATION

Microarray experiments are affected by numerous sources of non-biological variation that contribute systematic bias to the resulting data. In a dual-label (two-color) cDNA or long-oligonucleotide microarray, these systematic biases are often manifested as an imbalance of measured fluorescent intensities corresponding to Sample A versus those corresponding to Sample B. Systematic biases also affect between-slide comparisons. Making effective corrections for these systematic biases is a requisite for detecting the underlying biological variation between samples. Effective data normalization is therefore an essential step in the confident identification of biologically relevant differences in gene expression profiles. Several normalization methods for the correction of systemic bias have been described. While many of these methods have addressed intensity-dependent bias, few have addressed both intensity-dependent and spatiality-dependent bias.

RESULTS

We present a neural network-based normalization method for correcting the intensity- and spatiality-dependent bias in cDNA microarray datasets. In this normalization method, the dependence of the log-intensity ratio (M) on the average log-intensity (A) as well as on the spatial coordinates (X,Y) of spots is approximated with a feed-forward neural network function. Resistance to outliers is provided by assigning weights to each spot based on how distant their M values is from the median over the spots whose A values are similar, as well as by using pseudospatial coordinates instead of spot row and column indices. A comparison of the robust neural network method with other published methods demonstrates its potential in reducing both intensity-dependent bias and spatial-dependent bias, which translates to more reliable identification of truly regulated genes.

摘要

动机

微阵列实验受到多种非生物学变异来源的影响,这些变异会给所得数据带来系统偏差。在双标记(双色)cDNA或长寡核苷酸微阵列中,这些系统偏差通常表现为与样本A对应的测量荧光强度与与样本B对应的测量荧光强度之间的不平衡。系统偏差也会影响不同芯片之间的比较。有效校正这些系统偏差是检测样本间潜在生物学变异的必要条件。因此,有效的数据归一化是可靠识别基因表达谱中生物学相关差异的关键步骤。已经描述了几种用于校正系统偏差的归一化方法。虽然其中许多方法已经解决了强度依赖性偏差,但很少有方法同时解决强度依赖性偏差和空间依赖性偏差。

结果

我们提出了一种基于神经网络的归一化方法,用于校正cDNA微阵列数据集中的强度依赖性偏差和空间依赖性偏差。在这种归一化方法中,对数强度比(M)对平均对数强度(A)以及斑点空间坐标(X,Y)的依赖性由前馈神经网络函数近似。通过根据每个斑点的M值与A值相似的斑点的中位数的距离为每个斑点分配权重,以及使用伪空间坐标代替斑点的行和列索引,来提供对异常值的抗性。将稳健的神经网络方法与其他已发表的方法进行比较,证明了其在减少强度依赖性偏差和空间依赖性偏差方面的潜力,这转化为更可靠地识别真正受调控的基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验