Calcina Carmen S Guzmán, de Almeida Adelaide, Rocha José R Oliveira, Abrego Felipe Chen, Baffa Oswaldo
Departamento de Física e Matemática, FFCLRP, Universidade de São Paulo, Av Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
Phys Med Biol. 2005 Mar 21;50(6):1109-17. doi: 10.1088/0031-9155/50/6/005. Epub 2005 Feb 23.
Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40).
在高剂量率(HDR)近距离放射治疗中,将放射源定位到靠近肿瘤的位置并非瞬间完成。在放射源沿轨迹移动到其静止位置的过程中会有剂量增加。这一增加的剂量就是传输剂量,在近距离放射治疗的治疗计划中通常未被考虑。传输剂量取决于规定剂量、治疗分次次数、放射源的速度和活度。综合所有这些因素,传输剂量可能比规定的吸收剂量值高5%(Sang-Hyun和Muller-Runkel,1994年,《物理医学与生物学》39卷,1181 - 1188页;Nath等人,1995年,《医学物理》22卷,209 - 234页)。然而,它不能超过这个百分比(Nath等人,1995年)。在这项工作中,我们使用丙氨酸 - 电子顺磁共振(EPR)剂量测定系统,通过分析信号的一阶导数。对一个HDR系统的传输剂量进行了评估,其结果与热释光剂量计(TLD)已公布的结果一致(Bastin等人,1993年,《国际放射肿瘤学、生物学与物理学杂志》26卷,695 - 702页)。同样使用这个剂量测定系统,确定了用于评估放射源周围几何剂量衰减的径向剂量函数,其行为与通过蒙特卡罗模拟得到的结果(Nath等人,1995年;Williamson和Nath,1991年,《医学物理》18卷,434 - 448页;Ballester等人,1997年,《医学物理》24卷,1221 - 1228页;Ballester等人,2001年,《物理医学与生物学》46卷,N79 - 90页)比与TLD测量结果(Nath等人,1990年,《医学物理》17卷,1032 - 1040页)更吻合。