Suppr超能文献

光合作用中电子耦合的二维光谱学。

Two-dimensional spectroscopy of electronic couplings in photosynthesis.

作者信息

Brixner Tobias, Stenger Jens, Vaswani Harsha M, Cho Minhaeng, Blankenship Robert E, Fleming Graham R

机构信息

Department of Chemistry, and the Institute for Quantitative Biomedical Research (QB3), University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

出版信息

Nature. 2005 Mar 31;434(7033):625-8. doi: 10.1038/nature03429.

Abstract

Time-resolved optical spectroscopy is widely used to study vibrational and electronic dynamics by monitoring transient changes in excited state populations on a femtosecond timescale. Yet the fundamental cause of electronic and vibrational dynamics--the coupling between the different energy levels involved--is usually inferred only indirectly. Two-dimensional femtosecond infrared spectroscopy based on the heterodyne detection of three-pulse photon echoes has recently allowed the direct mapping of vibrational couplings, yielding transient structural information. Here we extend the approach to the visible range and directly measure electronic couplings in a molecular complex, the Fenna-Matthews-Olson photosynthetic light-harvesting protein. As in all photosynthetic systems, the conversion of light into chemical energy is driven by electronic couplings that ensure the efficient transport of energy from light-capturing antenna pigments to the reaction centre. We monitor this process as a function of time and frequency and show that excitation energy does not simply cascade stepwise down the energy ladder. We find instead distinct energy transport pathways that depend sensitively on the detailed spatial properties of the delocalized excited-state wavefunctions of the whole pigment-protein complex.

摘要

时间分辨光谱通过在飞秒时间尺度上监测激发态粒子数的瞬态变化,被广泛用于研究振动和电子动力学。然而,电子和振动动力学的根本原因——所涉及的不同能级之间的耦合——通常只能间接推断。基于三脉冲光子回波外差检测的二维飞秒红外光谱,最近实现了振动耦合的直接映射,产生了瞬态结构信息。在此,我们将该方法扩展到可见光范围,并直接测量了分子复合物芬纳-马修斯-奥尔森光合捕光蛋白中的电子耦合。在所有光合系统中,光到化学能的转化是由电子耦合驱动的,这种耦合确保了能量从光捕获天线色素到反应中心的有效传输。我们监测这个过程随时间和频率的变化,结果表明激发能量并非简单地沿能量阶梯逐步级联。相反,我们发现了不同的能量传输途径,这些途径敏感地依赖于整个色素-蛋白复合物离域激发态波函数的详细空间特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验