Suppr超能文献

计算高通量筛选中酶促反应或结合反应中抑制剂的检测概率。

Calculating the probability of detection for inhibitors in enzymatic or binding reactions in high-throughput screening.

作者信息

Buxser Stephen, Vroegop Steven

机构信息

PharmOptima, 4717 Campus Drive, Kalamazoo, MI 49008, USA.

出版信息

Anal Biochem. 2005 May 1;340(1):1-13. doi: 10.1016/j.ab.2005.01.034.

Abstract

In high-throughput screening (HTS) for drug candidates from a library containing tens of thousands to millions of chemical compounds, one problem is assessing the sensitivity of an assay for detecting compounds with a particular potency. For example, when looking for inhibitors of an enzyme, what is the potency of an inhibitor that will be readily detected by an enzyme inhibition assay? Similarly, when assessing compounds that inhibit binding between receptors and ligands or similar molecule-to-molecule interactions, what potency of an inhibitor will be readily detected? In this article, the well-established concepts of Michaelis-Menten kinetics and Langmuir binding isotherms are combined with fundamental statistical principles to yield a measure of assay sensitivity. The approach is general and can be modified to accommodate situations where the reaction kinetics is known to be more complicated than situations described by the Michaelis-Menten and Langmuir equations. The calculations presented take into account the concentration of inhibitor used, the variability of the assay, the relationship between the K(m) or K(d) of the reaction and the substrate or ligand concentration used, the threshold or cutoff value used for determining "hits," and the number of replicates used in screening.

摘要

在从包含数万至数百万种化合物的文库中进行药物候选物的高通量筛选(HTS)时,一个问题是评估检测具有特定效力的化合物的分析方法的灵敏度。例如,在寻找酶抑制剂时,酶抑制分析能够轻易检测到的抑制剂的效力是多少?同样,在评估抑制受体与配体之间结合或类似分子间相互作用的化合物时,能够轻易检测到的抑制剂的效力是多少?在本文中,成熟的米氏动力学和朗缪尔结合等温线概念与基本统计原理相结合,得出一种分析灵敏度的度量方法。该方法具有通用性,并且可以进行修改以适应反应动力学比米氏方程和朗缪尔方程所描述的情况更复杂的情形。所呈现的计算考虑了所用抑制剂的浓度、分析方法的变异性、反应的K(m)或K(d)与所用底物或配体浓度之间的关系、用于确定“命中”的阈值或截止值以及筛选中使用的重复次数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验