Chu Haitao, Kensler Thomas W, Muñoz Alvaro
Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, U.S.A.
Stat Med. 2005 Jul 15;24(13):2053-67. doi: 10.1002/sim.2079.
Many quantitative assay measurements of metabolites of environmental toxicants in clinical investigations are subject to left censoring due to values falling below assay detection limits. Moreover, when observations occur in both unexposed individuals and exposed individuals who reflect a mixture of two distributions due to differences in exposure, metabolism, response to intervention and other factors, the measurements of these biomarkers can be bimodally distributed with an extra spike below the limit of detection. Therefore, estimating the effect of interventions on these biomarkers becomes an important and challenging problem. In this article, we present maximum likelihood methods to estimate the effect of intervention in the context of mixture distributions when a large proportion of observations are below the limit of detection. The selection of the number of components of mixture distributions was carried out using both bootstrap-based and cross-validation-based information criterion. We illustrate our methods using data from a randomized clinical trial conducted in Qidong, People's Republic of China.
在临床研究中,许多对环境毒物代谢物的定量分析测量由于数值低于分析检测限而受到左删失的影响。此外,当观察对象包括未暴露个体和暴露个体时,由于暴露、代谢、对干预的反应及其他因素的差异,这些生物标志物的测量值可能呈现双峰分布,且在检测限以下有一个额外的峰值。因此,估计干预对这些生物标志物的影响成为一个重要且具有挑战性的问题。在本文中,我们提出了最大似然方法,用于在大部分观察值低于检测限的情况下,估计混合分布背景下干预的效果。混合分布成分数量的选择使用了基于自助法和基于交叉验证的信息准则。我们使用在中国启东进行的一项随机临床试验的数据来说明我们的方法。