Nagy Réka, Karandashov Vladimir, Chague Véronique, Kalinkevich Katsiaryna, Tamasloukht M'barek, Xu Guohua, Jakobsen Iver, Levy Avraham A, Amrhein Nikolaus, Bucher Marcel
Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Plant Biochemistry & Physiology Group, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland.
Plant J. 2005 Apr;42(2):236-50. doi: 10.1111/j.1365-313X.2005.02364.x.
Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture, is the transfer of phosphate (Pi) from the AM fungus to the plant, facilitated by plasma membrane-spanning Pi transporter proteins. The first mycorrhiza-specific plant Pi transporter to be identified, was StPT3 from potato [Nature414 (2004) 462]. Here, we describe novel Pi transporters from the solanaceous species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice [Proc. Natl Acad. Sci. USA, 99 (2002) 13324], respectively, but not with StPT3, indicating that two non-orthologous mycorrhiza-responsive genes encoding Pi transporters are co-expressed in the Solanaceae. The cloned promoter regions from both genes, LePT4 and StPT4, exhibit a high degree of sequence identity and were shown to direct expression exclusively in colonized cells when fused to the GUS reporter gene, in accordance with the abundance of LePT4 and StPT4 transcripts in mycorrhized roots. Furthermore, extensive sequencing of StPT4-like clones and subsequent expression analysis in potato and tomato revealed the presence of a close paralogue of StPT4 and LePT4, named StPT5 and LePT5, respectively, representing a third Pi transport system in solanaceous species which is upregulated upon AM fungal colonization of roots. Knock out of LePT4 in the tomato cv. MicroTom indicated considerable redundancy between LePT4 and other Pi transporters in tomato.
茄科植物是全球20多万种能形成菌根的植物物种之一,即根部与土壤中的丛枝菌根(AM)真菌共生。这种共生关系的一个重要参数是磷(Pi)从AM真菌转移到植物,这一过程由跨质膜的Pi转运蛋白促进,对生态系统生产力、农业和园艺至关重要。第一个被鉴定的菌根特异性植物Pi转运蛋白是来自马铃薯的StPT3[《自然》414(2004年)462]。在这里,我们描述了来自茄科植物番茄的新型Pi转运蛋白LePT4及其来自马铃薯的同源物StPT4,它们都是植物Pi转运蛋白Pht1家族的成员。系统发育树分析表明,LePT4和StPT4分别与来自蒺藜苜蓿[《植物细胞》,14(2002年)2413]和水稻[《美国国家科学院院刊》,99(2002年)13324]的菌根特异性Pi转运蛋白聚类,但不与StPT3聚类,这表明在茄科中共同表达了两个编码Pi转运蛋白的非直系同源菌根反应基因。从LePT4和StPT4这两个基因克隆的启动子区域表现出高度的序列同一性,并且当与GUS报告基因融合时,显示仅在被侵染的细胞中指导表达,这与菌根化根中LePT4和StPT4转录本的丰度一致。此外,对StPT4样克隆的广泛测序以及随后在马铃薯和番茄中的表达分析揭示了分别名为StPT5和LePT5的StPT4和LePT4的紧密旁系同源物的存在,它们代表了茄科植物中的第三个Pi转运系统,在根被AM真菌侵染后上调。在番茄品种MicroTom中敲除LePT4表明LePT4与番茄中的其他Pi转运蛋白之间存在相当大的冗余。