Hamamoto Tetsu, Tanaka Hideo, Mani Hiroki, Tanabe Takuji, Fujiwara Katsuji, Nakagami Takuo, Horie Minoru, Oyamada Masahito, Takamatsu Tetsuro
Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan.
J Mol Cell Cardiol. 2005 Apr;38(4):561-9. doi: 10.1016/j.yjmcc.2005.01.004.
Purkinje fibers play essential roles in impulse propagation to the ventricles, and their functional impairment can become arrhythmogenic. However, little is known about precise spatiotemporal pattern(s) of interconnection between Purkinje-fiber network and the underlying ventricular myocardium within the heart. To address this issue, we simultaneously visualized intracellular Ca(2+) dynamics at Purkinje fibers and subjacent ventricular myocytes in Langendorff-perfused rat hearts using multi-pinhole type, rapid-scanning confocal microscopy. Under recording of electrocardiogram at room temperature spatiotemporal changes in fluo3-fluorescence intensity were visualized on the subendocardial region of the right-ventricular septum. Staining of the heart with either fluo3, acetylthiocholine iodide (ATCHI), or di-4-ANEPPS revealed characteristic structures of Purkinje fibers. During sinus rhythm (about 60 bpm) or atrial pacing (up to 3 Hz) each Purkinje-fiber exhibited spatiotemporally synchronous Ca(2+) transients nearly simultaneously to ventricular excitation. Ca(2+) transients in individual fibers were still synchronized within the Purkinje-fiber network not only under high-K(+) (8 mM) perfusion-induced Purkinje-to-ventricular (P-V) conduction delay, but also under unidirectional, orthodromic P-V block produced by 10-mM K(+) perfusion. While spontaneous, asynchronous intracellular Ca(2+) waves were identified in injured fibers of Purkinje network locally, surrounding fibers still exhibited Ca(2+) transients synchronously to ventricular excitation. In summary, these results are the first demonstration of intracellular Ca(2+) dynamics in the Purkinje-fiber network in situ. The synchronous Ca(2+) transients, preserved even under P-V conduction disturbances or under emergence of Ca(2+) waves, imply a syncytial role of Purkinje fibers as a specialized conduction system, whereas unidirectional block at P-V junctions indicates a substrate for reentrant arrhythmias.
浦肯野纤维在冲动向心室的传导中起着至关重要的作用,其功能受损可能会引发心律失常。然而,关于心脏内浦肯野纤维网络与下层心室心肌之间精确的时空连接模式,人们了解甚少。为了解决这个问题,我们使用多针孔型快速扫描共聚焦显微镜,同时观察了Langendorff灌注大鼠心脏中浦肯野纤维和下方心室肌细胞内的Ca(2+)动态变化。在室温下记录心电图时,在右心室间隔的心内膜下区域观察到fluo3荧光强度的时空变化。用fluo3、碘化乙酰硫代胆碱(ATCHI)或二-4-ANEPPS对心脏进行染色,揭示了浦肯野纤维的特征结构。在窦性心律(约60次/分钟)或心房起搏(高达3 Hz)期间,每个浦肯野纤维几乎与心室兴奋同时表现出时空同步的Ca(2+)瞬变。不仅在高钾(8 mM)灌注诱导的浦肯野纤维到心室(P-V)传导延迟下,而且在10 mM钾灌注产生的单向、正向P-V阻滞下,单个纤维内的Ca(2+)瞬变在浦肯野纤维网络内仍保持同步。虽然在浦肯野网络的受损纤维局部发现了自发的、异步的细胞内Ca(2+)波,但周围纤维仍与心室兴奋同步表现出Ca(2+)瞬变。总之,这些结果首次证明了原位浦肯野纤维网络内的细胞内Ca(2+)动态变化。即使在P-V传导紊乱或Ca(2+)波出现的情况下仍保持同步的Ca(2+)瞬变,意味着浦肯野纤维作为特殊传导系统的合胞体作用,而P-V连接处的单向阻滞则为折返性心律失常提供了基础。