McCarthy Joy, McLeod Christopher J, Minners Jan, Essop M Faadiel, Ping Peipei, Sack Michael N
Hatter Institute for Cardiology Research, University of Cape Town Medical School, Cape Town, South Africa.
J Mol Cell Cardiol. 2005 Apr;38(4):697-700. doi: 10.1016/j.yjmcc.2005.02.010.
Modest cardiac-overexpression of constitutively active PKCepsilon (aPKCepsilon) in transgenic mice evokes cardioprotection against ischemia. As aPKCepsilon interacts with mitochondrial respiratory-chain proteins we hypothesized that aPKCepsilon modulates respiration to induce cardioprotection. Using isolated cardiac mitochondria wild-type and aPKCepsilon mice display similar basal mitochondrial respiration, rate of ATP synthesis and adenosine nucleotide translocase (ANT) functional content. Conversely, the aPKCepsilon mitochondria exhibit modest hyperpolarization of their inner mitochondrial membrane potential (DeltaPsi(m)) compared to wild-type mitochondrial by flow cytometry. To assess whether this hyperpolarization engenders resilience to simulated ischemia, anoxia-reoxygenation experiments were performed. Mitochondria were exposed to 45 min anoxia followed by reoxygenation. At reoxygenation, aPKCepsilon mitochondria recovered ADP-dependent respiration to 44 +/- 3% of baseline compared to 28 +/- 2% in WT controls (P = 0.03) in parallel with enhanced ATP synthesis. This preservation in oxidative phosphorylation is coupled to greater ANT functional content [42% > concentration of atractyloside for inhibition in the aPKCepsilon mitochondria vs. WT control (P < 0.0001)], retention of mitochondrial cytochrome c and conservation of DeltaPsi(m). These data demonstrate that mitochondria from PKCepsilon activated mice are intrinsically resilient to anoxia-reoxygenation compared to WT controls. This resilience is in part due to enhanced recovery of oxidative phosphorylation coupled to maintained ANT activity. As maintenance of ATP is a prerequisite for cellular viability we conclude that PKCepsilon activation augmented mitochondrial respiratory capacity in response to anoxia-reoxygenation may contribute to the PKCepsilon cardioprotective program.
在转基因小鼠中适度心脏过表达组成型活性蛋白激酶Cε(aPKCε)可引发针对缺血的心脏保护作用。由于aPKCε与线粒体呼吸链蛋白相互作用,我们推测aPKCε通过调节呼吸来诱导心脏保护。使用分离的心脏线粒体,野生型和aPKCε小鼠表现出相似的基础线粒体呼吸、ATP合成速率和腺苷酸转运酶(ANT)功能含量。相反,通过流式细胞术检测,与野生型线粒体相比,aPKCε线粒体的线粒体内膜电位(ΔΨm)呈现适度超极化。为了评估这种超极化是否能增强对模拟缺血的耐受性,进行了缺氧复氧实验。线粒体先暴露于45分钟缺氧状态,然后再进行复氧。复氧时,aPKCε线粒体的ADP依赖性呼吸恢复到基线的44±3%,而野生型对照组为28±2%(P = 0.03),同时ATP合成增强。这种氧化磷酸化的保存与更高的ANT功能含量相关[在aPKCε线粒体中抑制所需的苍术苷浓度为42%>野生型对照组(P < 0.0001)],线粒体细胞色素c的保留以及ΔΨm的维持。这些数据表明,与野生型对照组相比,来自PKCε激活小鼠的线粒体对缺氧复氧具有内在的耐受性。这种耐受性部分归因于氧化磷酸化恢复增强以及ANT活性的维持。由于ATP的维持是细胞存活的先决条件,我们得出结论,PKCε激活增强了线粒体对缺氧复氧的呼吸能力,这可能有助于PKCε的心脏保护作用。