Suppr超能文献

重采样功能磁共振成像时间序列。

Resampling fMRI time series.

作者信息

Friman Ola, Westin Carl-Fredrik

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Thorn 323, 75 Francis Street, Boston, MA 02115, USA.

出版信息

Neuroimage. 2005 Apr 15;25(3):859-67. doi: 10.1016/j.neuroimage.2004.11.046.

Abstract

The problem of selecting a threshold for the statistical parameter maps in functional MRI (fMRI) is a delicate issue. The use of advanced test statistics and/or the complex dependence structure of fMRI noise may preclude parametric statistical methods for finding appropriate thresholds. Non-parametric statistical methodology has been presented as a feasible alternative. In this paper, we discuss resampling methods for finding thresholds in single subject fMRI analysis. It is shown that the presence of a BOLD response in the time series biases the estimation of the temporal autocorrelation, which in turn leads to biased thresholds. Therefore, proposed resampling methods based on Fourier and wavelet transforms, which employ implicit and weak models of the temporal noise characteristic, may produce erroneous thresholds. In contrast, resampling based on a pre-whitening transform, which is driven by an explicit noise model, is robust to the presence of a BOLD response. The size of the bias is, however, largely dependent on the complexity of the experimental design. While blocked designs can induce large biases, event-related designs generate significantly smaller biases. Results supporting these claims are provided.

摘要

在功能磁共振成像(fMRI)中为统计参数图选择阈值是一个棘手的问题。先进测试统计方法的使用和/或fMRI噪声的复杂依赖结构可能排除用于寻找合适阈值的参数统计方法。非参数统计方法已被提出作为一种可行的替代方案。在本文中,我们讨论了在单受试者fMRI分析中寻找阈值的重采样方法。结果表明,时间序列中血氧水平依赖(BOLD)反应的存在会使时间自相关的估计产生偏差,进而导致阈值偏差。因此,基于傅里叶变换和小波变换的重采样方法,由于采用了时间噪声特征的隐式和弱模型,可能会产生错误的阈值。相比之下,基于预白化变换的重采样方法由明确的噪声模型驱动,对BOLD反应的存在具有鲁棒性。然而,偏差的大小在很大程度上取决于实验设计的复杂性。虽然组块设计会导致较大偏差,但事件相关设计产生的偏差要小得多。本文提供了支持这些观点的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验