Suppr超能文献

The N-acetyl-D-glucosaminylphosphatidylinositol De-N-acetylase of glycosylphosphatidylinositol biosynthesis is a zinc metalloenzyme.

作者信息

Urbaniak Michael D, Crossman Arthur, Chang Tunhan, Smith Terry K, van Aalten Daan M F, Ferguson Michael A J

机构信息

Division of Biological Chemistry and Molecular Microbiology, Wellcome Trust Biocentre, The University of Dundee, Scotland, UK.

出版信息

J Biol Chem. 2005 Jun 17;280(24):22831-8. doi: 10.1074/jbc.M502402200. Epub 2005 Apr 6.

Abstract

The de-N-acetylation of N-acetyl-D-glucosaminylphosphatidylinositol (GlcNAc-PI) is the second step of mammalian and trypanosomal glycosylphosphatidylinositol biosynthesis. Glycosylphosphatidylinositol biosynthesis is essential for Trypanosoma brucei, the causative agent of African sleeping sickness, and GlcNAc-PI de-N-acetylase has previously been validated as a drug target. Inhibition of the trypanosome cell-free system and recombinant rat GlcNAc-PI de-N-acetylase by divalent metal cation chelators demonstrates that a tightly bound divalent metal cation is essential for activity. Reconstitution of metal-free GlcNAc-PI de-N-acetylase with divalent metal cations restores activity in the order Zn(2+) > Cu(2+) > Ni(2+) > Co(2+) > Mg(2+). Site-directed mutagenesis and homology modeling were used to identify active site residues and postulate a mechanism of action. The characterization of GlcNAc-PI de-N-acetylase as a zinc metalloenzyme will facilitate the rational design of anti-protozoan parasite drugs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验