Le Poul Nicolas, Campion Morgan, Izzet Guillaume, Douziech Bénédicte, Reinaud Olivia, Le Mest Yves
Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, UMR CNRS 6521, Université de Bretagne Occidentale, 6 av. Le Gorgeu, 29238 Brest Cedex 3, France.
J Am Chem Soc. 2005 Apr 20;127(15):5280-1. doi: 10.1021/ja043073h.
The electrochemical behavior of the tris(pyridine) calix[6]arene Cu adducts is unique as compared to that of most classical Cu complexes in a strain-free environment. The presence of MeCN buried inside the cavity is a prerequisite for a quasi-reversible behavior in a dynamic mode. The CV behavior assisted by simulation outlines that the coordination adaptability of the Cu(II)/Cu(I) redox states is completely reversed, with a Td geometry enforced at either redox states. Hence, the supramolecular control of the Cu coordination by a protein-like pocket determines the dynamics of the electron transfer process, its thermodynamics, and the kinetics of the reorganizational barrier and generates a preorganized state for oxidation. This redox behavior corresponds to an overall induced-fit process generating a truly entatic highly oxidizing Cu(II) state through a protein-like strain by involvement of the secondary coordination sphere.
与大多数在无应变环境中的经典铜配合物相比,三(吡啶)杯[6]芳烃铜加合物的电化学行为独具特色。腔体内存在乙腈是其在动态模式下呈现准可逆行为的前提条件。模拟辅助的循环伏安行为表明,Cu(II)/Cu(I)氧化还原态的配位适应性完全相反,在任一氧化还原态下均强制形成Td几何构型。因此,由类似蛋白质的口袋对铜配位进行的超分子控制决定了电子转移过程的动力学、热力学以及重组势垒的动力学,并产生了用于氧化的预组织状态。这种氧化还原行为对应于一个整体的诱导契合过程,通过二级配位层的参与,通过类似蛋白质的应变产生真正的高氧化态的Cu(II)状态。