Suppr超能文献

从分子动力学到手动力学:一种新型伽利略不变恒温器。

From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat.

作者信息

Stoyanov Simeon D, Groot Robert D

机构信息

Unilever Research Vlaardingen, The Netherlands.

出版信息

J Chem Phys. 2005 Mar 15;122(11):114112. doi: 10.1063/1.1870892.

Abstract

This paper proposes a novel thermostat applicable to any particle-based dynamic simulation. Each pair of particles is thermostated either (with probability P) with a pairwise Lowe-Andersen thermostat [C. P. Lowe, Europhys. Lett. 47, 145 (1999)] or (with probability 1-P) with a thermostat that is introduced here, which is based on a pairwise interaction similar to the Nosé-Hoover thermostat. When the pairwise Nosé-Hoover thermostat dominates (low P), the liquid has a high diffusion coefficient and low viscosity, but when the Lowe-Andersen thermostat dominates, the diffusion coefficient is low and viscosity is high. This novel Nosé-Hoover-Lowe-Andersen thermostat is Galilean invariant and preserves both total linear and angular momentum of the system, due to the fact that the thermostatic forces between each pair of the particles are pairwise additive and central. We show by simulation that this thermostat also preserves hydrodynamics. For the (noninteracting) ideal gas at P = 0, the diffusion coefficient diverges and viscosity is zero, while for P > 0 it has a finite value. By adjusting probability P, the Schmidt number can be varied by orders of magnitude. The temperature deviation from the required value is at least an order of magnitude smaller than in dissipative particle dynamics (DPD), while the equilibrium properties of the system are very well reproduced. The thermostat is easy to implement and offers a computational efficiency better than (DPD), with better temperature control and greater flexibility in terms of adjusting the diffusion coefficient and viscosity of the simulated system. Applications of this thermostat include all standard molecular dynamic simulations of dense liquids and solids with any type of force field, as well as hydrodynamic simulation of multiphase systems with largely different bulk viscosities, including surface viscosity, and of dilute gases and plasmas.

摘要

本文提出了一种适用于任何基于粒子的动态模拟的新型恒温器。每对粒子要么(以概率P)采用成对的洛厄 - 安德森恒温器[C.P.洛厄,《欧洲物理快报》47, 145 (1999)]进行恒温控制,要么(以概率1 - P)采用本文引入的一种恒温器进行恒温控制,该恒温器基于一种类似于诺思 - 胡佛恒温器的成对相互作用。当成对的诺思 - 胡佛恒温器占主导(P值低)时,液体具有高扩散系数和低粘度,但当洛厄 - 安德森恒温器占主导时,扩散系数低且粘度高。这种新型的诺思 - 胡佛 - 洛厄 - 安德森恒温器是伽利略不变的,并且由于每对粒子之间的恒温力是成对相加且是中心力,所以它能保持系统的总线性动量和角动量。我们通过模拟表明,这种恒温器还能保持流体动力学特性。对于P = 0时的(非相互作用)理想气体,扩散系数发散且粘度为零,而对于P > 0时它具有有限值。通过调整概率P,施密特数可以变化几个数量级。与耗散粒子动力学(DPD)相比,温度与所需值的偏差至少小一个数量级,同时系统的平衡特性得到了很好的再现。该恒温器易于实现,并且在计算效率方面优于(DPD),在调节模拟系统的扩散系数和粘度方面具有更好的温度控制和更大的灵活性。这种恒温器的应用包括对具有任何类型力场的稠密液体和固体进行所有标准的分子动力学模拟,以及对具有很大不同体粘度(包括表面粘度)的多相系统、稀薄气体和等离子体进行流体动力学模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验