Suppr超能文献

根据中位数、极差和样本量估计均值和方差。

Estimating the mean and variance from the median, range, and the size of a sample.

作者信息

Hozo Stela Pudar, Djulbegovic Benjamin, Hozo Iztok

机构信息

Department of Mathematics, Indiana University Northwest, Gary, IN 46408, USA.

出版信息

BMC Med Res Methodol. 2005 Apr 20;5:13. doi: 10.1186/1471-2288-5-13.

Abstract

BACKGROUND

Usually the researchers performing meta-analysis of continuous outcomes from clinical trials need their mean value and the variance (or standard deviation) in order to pool data. However, sometimes the published reports of clinical trials only report the median, range and the size of the trial.

METHODS

In this article we use simple and elementary inequalities and approximations in order to estimate the mean and the variance for such trials. Our estimation is distribution-free, i.e., it makes no assumption on the distribution of the underlying data.

RESULTS

We found two simple formulas that estimate the mean using the values of the median (m), low and high end of the range (a and b, respectively), and n (the sample size). Using simulations, we show that median can be used to estimate mean when the sample size is larger than 25. For smaller samples our new formula, devised in this paper, should be used. We also estimated the variance of an unknown sample using the median, low and high end of the range, and the sample size. Our estimate is performing as the best estimate in our simulations for very small samples (n < or = 15). For moderately sized samples (15 < n < or = 70), our simulations show that the formula range/4 is the best estimator for the standard deviation (variance). For large samples (n > 70), the formula range/6 gives the best estimator for the standard deviation (variance). We also include an illustrative example of the potential value of our method using reports from the Cochrane review on the role of erythropoietin in anemia due to malignancy.

CONCLUSION

Using these formulas, we hope to help meta-analysts use clinical trials in their analysis even when not all of the information is available and/or reported.

摘要

背景

通常,对临床试验中的连续结果进行荟萃分析的研究人员需要均值和方差(或标准差)来汇总数据。然而,有时临床试验的已发表报告仅报告中位数、范围和试验规模。

方法

在本文中,我们使用简单的基本不等式和近似值来估计此类试验的均值和方差。我们的估计是无分布的,即不对基础数据的分布做任何假设。

结果

我们找到了两个简单公式,可利用中位数(m)、范围的低端和高端(分别为a和b)以及n(样本量)的值来估计均值。通过模拟,我们表明当样本量大于25时,中位数可用于估计均值。对于较小的样本,应使用本文设计的新公式。我们还利用中位数、范围的低端和高端以及样本量估计了未知样本的方差。在我们的模拟中,对于非常小的样本(n≤15),我们的估计是最佳估计。对于中等规模的样本(15<n≤70),我们的模拟表明公式范围/4是标准差(方差)的最佳估计量。对于大样本(n>70),公式范围/6给出标准差(方差)的最佳估计量。我们还通过Cochrane系统评价中关于促红细胞生成素在恶性肿瘤所致贫血中的作用的报告给出了一个示例,说明我们方法的潜在价值。

结论

使用这些公式,我们希望能帮助荟萃分析人员在分析中使用临床试验,即使并非所有信息都可获取和/或都有报告。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f22/1097734/48147c3e9aa4/1471-2288-5-13-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验