Suppr超能文献

[用于牛奶近红外光谱分析的快速异常值检测]

[Fast outlier detection for milk near-infrared spectroscopy analysis].

作者信息

Liu Rong, Chen Wen-liang, Xu Ke-xin, Qiu Qing-jun, Cui Hou-xin

机构信息

State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments & Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2005 Feb;25(2):207-10.

Abstract

Near-infrared spectroscopy is a fast and efficient analytical technique based on multivariate calibration model, which correlates near-infrared spectra with the property of samples (such as concentration). The reliability of analytical results depends mostly on the accuracy of measured spectra. But outliers do not make for reliable data. The authors combined RHM (Resampling by Half-Means) with SHV (Smallest Half-Volume) method to detect the outliers of the near-infrared spectra of milk samples, and the results were satisfactory. The performance of the new method is superior to the traditional outliers detecting algorithms such as Mahalanobis distances and hat matrix leverage. And this combined method is simple and fast to use, conceptually clear, and numerically stable, so it is recommended to be used for the detection of multiple outliers in multivariate data, especially the online measurement and discriminant analysis.

摘要

近红外光谱法是一种基于多元校准模型的快速高效分析技术,它将近红外光谱与样品的性质(如浓度)相关联。分析结果的可靠性主要取决于测量光谱的准确性。但是异常值不利于获得可靠的数据。作者将半均值重采样(RHM)与最小半体积(SHV)方法相结合,用于检测牛奶样品近红外光谱中的异常值,结果令人满意。新方法的性能优于马氏距离和帽子矩阵杠杆率等传统异常值检测算法。而且这种组合方法使用简单快速,概念清晰,数值稳定,因此建议用于多变量数据中多个异常值的检测,尤其是在线测量和判别分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验