Suppr超能文献

利用卫星衍生的土地利用和土地覆盖数据估算生物源排放,用于休斯顿-加尔维斯顿臭氧不达标的空气质量建模。

Estimation of biogenic emissions with satellite-derived land use and land cover data for air quality modeling of Houston-Galveston ozone nonattainment area.

作者信息

Byun Daewon W, Kim Soontae, Czader Beata, Nowak David, Stetson Stephen, Estes Mark

机构信息

Institute for Multi-dimensional Air Quality Studies, University of Houston, Houston, TX 77204-5007, USA.

出版信息

J Environ Manage. 2005 Jun;75(4):285-301. doi: 10.1016/j.jenvman.2004.10.009.

Abstract

The Houston-Galveston Area (HGA) is one of the most severe ozone non-attainment regions in the US. To study the effectiveness of controlling anthropogenic emissions to mitigate regional ozone nonattainment problems, it is necessary to utilize adequate datasets describing the environmental conditions that influence the photochemical reactivity of the ambient atmosphere. Compared to the anthropogenic emissions from point and mobile sources, there are large uncertainties in the locations and amounts of biogenic emissions. For regional air quality modeling applications, biogenic emissions are not directly measured but are usually estimated with meteorological data such as photo-synthetically active solar radiation, surface temperature, land type, and vegetation database. In this paper, we characterize these meteorological input parameters and two different land use land cover datasets available for HGA: the conventional biogenic vegetation/land use data and satellite-derived high-resolution land cover data. We describe the procedures used for the estimation of biogenic emissions with the satellite derived land cover data and leaf mass density information. Air quality model simulations were performed using both the original and the new biogenic emissions estimates. The results showed that there were considerable uncertainties in biogenic emissions inputs. Subsequently, ozone predictions were affected up to 10 ppb, but the magnitudes and locations of peak ozone varied each day depending on the upwind or downwind positions of the biogenic emission sources relative to the anthropogenic NOx and VOC sources. Although the assessment had limitations such as heterogeneity in the spatial resolutions, the study highlighted the significance of biogenic emissions uncertainty on air quality predictions. However, the study did not allow extrapolation of the directional changes in air quality corresponding to the changes in LULC because the two datasets were based on vastly different LULC category definitions and uncertainties in the vegetation distributions.

摘要

休斯顿-加尔维斯顿地区(HGA)是美国臭氧超标最严重的地区之一。为研究控制人为排放以缓解区域臭氧超标问题的有效性,有必要利用充足的数据集来描述影响大气光化学反应性的环境条件。与点源和移动源的人为排放相比,生物源排放的位置和数量存在很大的不确定性。在区域空气质量建模应用中,生物源排放并非直接测量,而是通常根据光合有效太阳辐射、地表温度、土地类型和植被数据库等气象数据进行估算。在本文中,我们对这些气象输入参数以及可用于HGA的两种不同土地利用土地覆盖数据集进行了特征描述:传统的生物源植被/土地利用数据和卫星衍生的高分辨率土地覆盖数据。我们描述了利用卫星衍生的土地覆盖数据和叶质量密度信息估算生物源排放的程序。使用原始和新的生物源排放估算值进行了空气质量模型模拟。结果表明,生物源排放输入存在相当大的不确定性。随后,臭氧预测受到高达10 ppb的影响,但臭氧峰值的大小和位置每天都有所不同,这取决于生物源排放源相对于人为氮氧化物和挥发性有机化合物源的上风或下风位置。尽管该评估存在诸如空间分辨率异质性等局限性,但该研究突出了生物源排放不确定性对空气质量预测的重要性。然而,由于这两个数据集基于截然不同的土地利用土地覆盖类别定义和植被分布的不确定性,该研究无法推断与土地利用土地覆盖变化相对应的空气质量方向变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验