Koścień E, Sanetra J, Gondek E, Jarosz B, Kityk I V, Ebothe J, Kityk A V
Institute for Computer Science, Technical University of Czestochowa, Armii Krajowej 17, 42-200 Czestochowa, Poland.
Spectrochim Acta A Mol Biomol Spectrosc. 2005 Jun;61(8):1933-8. doi: 10.1016/j.saa.2004.07.025.
We present here results of experimental studies and quantum-chemical simulations of optical absorption and optical poling effects performed on a new synthesized cyan, ethylcarboxyl and tert-buthyl derivatives of 1H-pyrazolo[3,4-b]quinoline incorporated into polymer matrix or dissolved in organic solutions. The efficiency of second-order optical susceptibility d vs photoinduced power density I(p) clearly saturates to certain magnitude d(eff) at sufficient power densities (I(p) > or = 1.3 GW cm(-2)). Comparing experimental data and results of semiempirical quantum-chemical simulations one can conclude that there exists generally a good correlation between the magnitude of saturated susceptibilities d(eff) and macroscopic hyperpolarizabilities for all compounds except the chromophore 1,3-dimethyl-6-cyano-[PQ] only. The discrepancy for this compound may reflect a specific contribution of surrounding polymer matrix. According to the quantum chemical analysis the methyl-containing cyan and ethylocarcoxyl derivatives reveal four/five strong absorption bands in the spectral range 200-500 nm. A substitution of the methyl groups by the phenyl group causes the substantial changes of the absorption spectra mainly in the spectral range 240-370 nm. Measured and calculated absorption spectra manifest rather good agreement mainly in the part regarding the spectral positions of the first oscillator (absorption threshold). The quantum-chemical PM3 method shows the best agreement with experiment. At the same time a considerable broadening almost of all absorption bands appears as a characteristic feature of all measured spectra. The discrepancies between the calculated and the measured spectra are attributed to electron-vibronic coupling as well as to a specific rotational dynamics of phenyl rings.
我们在此展示了对新合成的1H-吡唑并[3,4-b]喹啉的氰基、乙基羧基和叔丁基衍生物进行的实验研究结果以及光吸收和光极化效应的量子化学模拟结果,这些衍生物被掺入聚合物基质或溶解于有机溶液中。二阶光学极化率d与光致功率密度I(p)的效率在足够高的功率密度(I(p)≥1.3 GW cm⁻²)下明显饱和至某一大小d(eff)。比较实验数据和半经验量子化学模拟结果可以得出结论,除了发色团1,3-二甲基-6-氰基-[PQ]外,所有化合物的饱和极化率d(eff)大小与宏观超极化率之间通常存在良好的相关性。该化合物的差异可能反映了周围聚合物基质的特定贡献。根据量子化学分析,含甲基的氰基和乙基羧基衍生物在200 - 500 nm光谱范围内显示出四/五个强吸收带。用苯基取代甲基会导致吸收光谱主要在240 - 370 nm光谱范围内发生显著变化。测量和计算得到的吸收光谱在主要关于第一个振子的光谱位置(吸收阈值)部分表现出相当好的一致性。量子化学PM3方法与实验结果吻合最佳。同时,几乎所有吸收带都出现相当程度的展宽,这是所有测量光谱的一个特征。计算光谱与测量光谱之间的差异归因于电子 - 振动耦合以及苯环的特定旋转动力学。