Suppr超能文献

感染经典猪瘟病毒的细胞中干扰素调节因子3的缺失涉及N端蛋白酶Npro。

Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro.

作者信息

La Rocca S Anna, Herbert Rebecca J, Crooke Helen, Drew Trevor W, Wileman Thomas E, Powell Penny P

机构信息

Department of Immunology, BBSRC Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.

出版信息

J Virol. 2005 Jun;79(11):7239-47. doi: 10.1128/JVI.79.11.7239-7247.2005.

Abstract

We show that cells infected with the pestivirus classical swine fever virus (CSFV) fail to produce alpha/beta interferon not only following treatment with double-stranded RNA but also after superinfection with a heterologous virus, the alphavirus Sindbis virus, a virus shown to normally induce interferon. We investigated whether the inhibition of interferon synthesis by CSFV involved a block in interferon regulatory factor 3 (IRF3) activity. Cells infected with CSFV exhibited a lack of translocation of green fluorescent protein-IRF3 to the nucleus; however, constitutive shuttling of IRF3 was not blocked, since it could still accumulate in the nucleus in the presence of leptomycin B. Interestingly subcellular fractionation analysis showed that IRF3 was lost from the cytoplasm of infected cells from 18 h postinfection onwards. Using IRF3 promoter-luciferase reporter constructs, we demonstrate that loss of IRF3 was due to an inhibition of transcription of the IRF3 gene in CSFV-infected cells. Further, we investigated which viral protein may be responsible for the inhibition of interferon and loss of IRF3. We used cell lines expressing the CSFV N-terminal protease (Npro) to show that this single viral protein, unique to pestiviruses, inhibited interferon production in response to Sindbis virus. In addition to being lost from CSFV-infected cells, IRF3 was lost from Npro-expressing cells. The results demonstrate a novel viral evasion of innate host defenses, where interferon synthesis is prevented by inhibiting transcription of IRF3 in CSFV-infected cells.

摘要

我们发现,感染瘟病毒经典猪瘟病毒(CSFV)的细胞不仅在用双链RNA处理后无法产生α/β干扰素,在用异源病毒辛德毕斯病毒(一种通常能诱导干扰素的甲病毒)进行超感染后也无法产生。我们研究了CSFV对干扰素合成的抑制是否涉及干扰素调节因子3(IRF3)活性的阻断。感染CSFV的细胞中绿色荧光蛋白-IRF3缺乏向细胞核的转运;然而,IRF3的组成型穿梭并未被阻断,因为在存在 leptomycin B的情况下它仍能在细胞核中积累。有趣的是,亚细胞分级分离分析表明,从感染后18小时起,IRF3从感染细胞的细胞质中消失。使用IRF3启动子-荧光素酶报告构建体,我们证明IRF3的缺失是由于CSFV感染细胞中IRF3基因转录受到抑制。此外,我们研究了哪种病毒蛋白可能负责抑制干扰素和导致IRF3缺失。我们使用表达CSFV N端蛋白酶(Npro)的细胞系来表明,这种瘟病毒特有的单一病毒蛋白抑制了对辛德毕斯病毒的干扰素产生。除了从CSFV感染细胞中消失外,IRF3也从表达Npro的细胞中消失。结果证明了一种新的病毒逃避宿主先天防御的机制,即在CSFV感染细胞中通过抑制IRF3转录来阻止干扰素合成。

相似文献

4
Zinc binding in pestivirus N(pro) is required for interferon regulatory factor 3 interaction and degradation.
J Mol Biol. 2009 Aug 14;391(2):438-49. doi: 10.1016/j.jmb.2009.06.040. Epub 2009 Jun 21.
6
Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells.
Virology. 2005 Dec 5;343(1):93-105. doi: 10.1016/j.virol.2005.08.016. Epub 2005 Sep 8.
7
Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine.
Virology. 2005 Dec 5;343(1):116-27. doi: 10.1016/j.virol.2005.08.015. Epub 2005 Sep 15.
8
Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer.
J Virol. 2016 Aug 12;90(17):7740-7. doi: 10.1128/JVI.00318-16. Print 2016 Sep 1.
9
Effects of the nuclear localization of the N(pro) protein of classical swine fever virus on its virulence in pigs.
Vet Microbiol. 2014 Dec 5;174(3-4):391-398. doi: 10.1016/j.vetmic.2014.09.027. Epub 2014 Oct 17.

引用本文的文献

1
Strategies of Classical Swine Fever Immune Evasion.
Int J Mol Sci. 2025 Aug 14;26(16):7838. doi: 10.3390/ijms26167838.
3
Attachment, Entry, and Intracellular Trafficking of Classical Swine Fever Virus.
Viruses. 2023 Sep 3;15(9):1870. doi: 10.3390/v15091870.
5
Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses.
Front Immunol. 2023 Apr 17;14:1172000. doi: 10.3389/fimmu.2023.1172000. eCollection 2023.
6
Current progress on innate immune evasion mediated by N protein of pestiviruses.
Front Immunol. 2023 Apr 5;14:1136051. doi: 10.3389/fimmu.2023.1136051. eCollection 2023.
7
Pestiviruses infection: Interferon-virus mutual regulation.
Front Cell Infect Microbiol. 2023 Mar 2;13:1146394. doi: 10.3389/fcimb.2023.1146394. eCollection 2023.
9
A double deletion prevents replication of the pestivirus bovine viral diarrhea virus in the placenta of pregnant heifers.
PLoS Pathog. 2021 Dec 8;17(12):e1010107. doi: 10.1371/journal.ppat.1010107. eCollection 2021 Dec.
10
The Molecular Basis for E Dimerization in Classical Swine Fever Virus.
Viruses. 2021 Nov 2;13(11):2204. doi: 10.3390/v13112204.

本文引用的文献

1
NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription.
J Virol. 2004 Sep;78(18):9798-806. doi: 10.1128/JVI.78.18.9798-9806.2004.
2
Hepatitis C virus NS5A: tales of a promiscuous protein.
J Gen Virol. 2004 Sep;85(Pt 9):2485-2502. doi: 10.1099/vir.0.80204-0.
3
Determinants of virulence of classical swine fever virus strain Brescia.
J Virol. 2004 Aug;78(16):8812-23. doi: 10.1128/JVI.78.16.8812-8823.2004.
6
TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus.
Cell. 2004 Feb 20;116(4):541-50. doi: 10.1016/s0092-8674(04)00132-1.
7
Attenuation of classical swine fever virus by deletion of the viral N(pro) gene.
Vaccine. 2004 Jan 2;22(3-4):317-28. doi: 10.1016/j.vaccine.2003.08.006.
8
Inhibition of interferon signaling by dengue virus.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14333-8. doi: 10.1073/pnas.2335168100. Epub 2003 Nov 11.
9
Classical swine fever--an update.
Res Vet Sci. 2003 Dec;75(3):169-78. doi: 10.1016/s0034-5288(03)00076-6.
10
The interaction of cytoplasmic RNA viruses with the nucleus.
Virus Res. 2003 Sep;95(1-2):75-85. doi: 10.1016/s0168-1702(03)00164-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验