Skinner Joseph P, Chen Yan, Müller Joachim D
School of Physics and Astronomy, University of Minnesota, Minneapolis, 55455, USA.
Biophys J. 2005 Aug;89(2):1288-301. doi: 10.1529/biophysj.105.060749. Epub 2005 May 13.
Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.
荧光相关光谱法(FCS)使用固定激光束照射小样本体积,并分析固定观测体积内荧光涨落的时间行为。相比之下,扫描FCS(SFCS)通过扫描激光束从移动观测体积收集荧光信号。此时涨落包含了关于样本的时间和空间信息。为了获取空间信息,我们同步扫描和数据采集。同步使我们能够评估沿扫描轨迹每个位置的相关性。在本研究中我们使用圆形扫描轨迹。由于扫描半径恒定,相位角足以表征光束的位置。我们引入位置敏感型SFCS(PSFCS),其中相关性作为滞后时间和相位的函数来计算。我们阐述了PSFCS理论,并推导了扩散、存在流动时的扩散以及固定化的表达式。为了测试PSFCS,我们将实验数据与理论进行比较。我们确定了流动染料溶液的方向和速度以及固定化粒子的位置。为了证明该技术在活细胞应用中的可行性,我们展示了在COS细胞核中测量的增强型绿色荧光蛋白的数据。