Suppr超能文献

Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth.

作者信息

Altomare Deborah A, You Huihong, Xiao Guang-Hui, Ramos-Nino Maria E, Skele Kristine L, De Rienzo Assunta, Jhanwar Suresh C, Mossman Brooke T, Kane Agnes B, Testa Joseph R

机构信息

Human Genetics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.

出版信息

Oncogene. 2005 Sep 8;24(40):6080-9. doi: 10.1038/sj.onc.1208744.

Abstract

Malignant mesotheliomas (MMs) are very aggressive tumors that respond poorly to standard chemotherapeutic approaches. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in tumor aggressiveness, in part by mediating cell survival and reducing sensitivity to chemotherapy. Using antibodies recognizing the phosphorylated/activated form of AKT kinases, we observed elevated phospho-AKT staining in 17 of 26 (65%) human MM specimens. In addition, AKT phosphorylation was consistently observed in MMs arising in asbestos-treated mice and in MM cell xenografts. Consistent with reports implicating hepatocyte growth factor (HGF)/Met receptor signaling in MM, all 14 human and murine MM cell lines had HGF-inducible AKT activity. One of nine human MM cell lines had elevated AKT activity under serum-starvation conditions, which was associated with a homozygous deletion of PTEN, the first reported in MM. Treatment of this cell line with the mTOR inhibitor rapamycin resulted in growth arrest in G1 phase. Treatment of MM cells with the PI3K inhibitor LY294002 in combination with cisplatin had greater efficacy in inhibiting cell proliferation and inducing apoptosis than either agent alone. Collectively, these data indicate that MMs frequently express elevated AKT activity, which may be targeted pharmacologically to enhance chemotherapeutic efficacy. These findings also suggest that mouse models of MM may be useful for future preclinical studies of pharmaceuticals targeting the PI3K/AKT pathway.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验