Suppr超能文献

胰腺癌基因芯片数据的荟萃分析确定了一组常见的失调基因。

Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes.

作者信息

Grützmann Robert, Boriss Hinnerk, Ammerpohl Ole, Lüttges Jutta, Kalthoff Holger, Schackert Hans Konrad, Klöppel Günter, Saeger Hans Detlev, Pilarsky Christian

机构信息

Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany.

出版信息

Oncogene. 2005 Jul 28;24(32):5079-88. doi: 10.1038/sj.onc.1208696.

Abstract

Pancreatic ductal adenocarcinoma is the eighth most common cancer with the lowest overall 5-year relative survival rate of any tumor type today. Expression profiling using microarrays has been widely used to identify genes associated with pancreatic cancer development. To extract maximum value from the available gene expression data, we applied a meta-analysis to search for commonly differentially expressed genes in pancreatic ductal adenocarcinoma. We obtained data sets from four different gene expression studies on pancreatic cancer. We selected a consensus set of 2984 genes measured in all four studies and applied a meta-analysis approach to evaluate the combined data. Of the genes identified as differentially expressed, several were validated using RT-PCR and immunohistochemistry. Additionally, we used a class discovery algorithm to identify a gene expression signature. Our meta-analysis revealed that the pancreatic cancer gene expression data sets shared a significant number of up- and downregulated genes, independent of the technology used. This interstudy crossvalidation approach generated a set of 568 genes that were consistently and significantly dysregulated in pancreatic cancer. Of these, 364 (64.1%) were upregulated and 204 (35.9%) were downregulated in pancreatic cancer. Only 127 (22%) were described in the published individual analyses. Functional annotation of the genes revealed that genes presumably associated with the cell adhesion-mediated drug resistance pathway are frequently overexpressed in pancreatic cancer. Meta-analysis is an important tool for the identification and validation of differentially expressed genes. These could represent good candidates for novel diagnostic and therapeutic approaches to pancreatic cancer.

摘要

胰腺导管腺癌是当今第八大常见癌症,是所有肿瘤类型中总体5年相对生存率最低的。使用微阵列进行表达谱分析已被广泛用于识别与胰腺癌发生相关的基因。为了从现有的基因表达数据中提取最大价值,我们应用荟萃分析来寻找胰腺导管腺癌中共同差异表达的基因。我们从四项关于胰腺癌的不同基因表达研究中获取数据集。我们选择了在所有四项研究中都测量的2984个基因的共识集,并应用荟萃分析方法来评估合并后的数据。在被鉴定为差异表达的基因中,有几个通过逆转录聚合酶链反应(RT-PCR)和免疫组织化学进行了验证。此外,我们使用了一种分类发现算法来识别基因表达特征。我们的荟萃分析表明,胰腺癌基因表达数据集共享了大量上调和下调的基因,与所使用的技术无关。这种研究间交叉验证方法产生了一组在胰腺癌中持续且显著失调的568个基因。其中,364个(64.1%)在胰腺癌中上调,204个(35.9%)下调。在已发表的个体分析中仅描述了127个(22%)。对这些基因的功能注释表明,推测与细胞粘附介导的耐药途径相关的基因在胰腺癌中经常过度表达。荟萃分析是识别和验证差异表达基因的重要工具。这些基因可能是胰腺癌新型诊断和治疗方法的良好候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验