Suppr超能文献

通过部分非参数方法用自展推导的标准误差估计检测限。在高效液相色谱药物分析中的应用。

Estimation of the limit of detection with a bootstrap-derived standard error by a partly non-parametric approach. Application to HPLC drug assays.

作者信息

Linnet Kristian

机构信息

Laboratory of Clinical Biochemistry, Psychiatric University Hospital, Risskov, Denmark.

出版信息

Clin Chem Lab Med. 2005;43(4):394-9. doi: 10.1515/CCLM.2005.071.

Abstract

A recently proposed procedure for estimating the limit of detection (LoD) of an assay using a partly non-parametric approach is applied to five HPLC drug assays. The non-parametrically determined 95th percentile of the blank measurements (LoB) is obtained as the value of the N (95/100) + 0.5 ordered observations. The LoD is the lowest level of analyte that is likely to yield a measured result exceeding the LoB. The LoD equals LoB + c(beta) x SD(S), where SD S is the analytical SD at low concentrations, and c(beta) = z(1-beta)/(1-1/(4 x f )) (f = degrees of freedom). c(beta) approximately 1.65 for a type II error of 5%. The blank distributions deviated significantly from normality for four of the five assays because of skewness to the right. The estimated LoB ranged from 3.3 to 10.2 nmol/L. The LoDs were in the interval from 7.8 to 17.2 nmol/L. A new procedure for estimation of the standard error (SE) of the estimated LoD that is partly based on the bootstrap principle showed good performance in simulation studies. In conclusion, the partly non-parametric procedure for estimation of the LoD of typical HPLC drug assays was found to be a suitable approach.

摘要

一种最近提出的使用部分非参数方法估计分析方法检测限(LoD)的程序被应用于五种高效液相色谱(HPLC)药物分析。通过对N(95/100)+ 0.5个有序观测值求值,得到非参数确定的空白测量值的第95百分位数(LoB)。LoD是可能产生超过LoB测量结果的最低分析物水平。LoD等于LoB + c(β)×SD(S),其中SD(S)是低浓度下的分析标准差,且c(β) = z(1-β)/(1 - 1/(4×f))(f =自由度)。对于5%的II类错误,c(β)约为1.65。由于五个分析中有四个的空白分布向右偏斜,显著偏离正态性。估计的LoB范围为3.3至10.2 nmol/L。LoD在7.8至17.2 nmol/L的区间内。一种部分基于自助法原理估计估计LoD标准误差(SE)的新程序在模拟研究中表现良好。总之,发现用于估计典型HPLC药物分析LoD的部分非参数程序是一种合适的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验