Suppr超能文献

Numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions.

作者信息

Giacometti Achille, Gazzillo Domenico, Pastore Giorgio, Das Tushar Kanti

机构信息

Istituto Nazionale per la Fisica della Materia and Dipartimento di Chimica Fisica, Università di Venezia, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031108. doi: 10.1103/PhysRevE.71.031108. Epub 2005 Mar 21.

Abstract

The main goal of this paper is to assess the limits of validity, in the regime of low concentration and strong Coulomb coupling (high molecular charges), of a simple perturbative approximation to the radial distribution functions (RDF's), based upon a low-density expansion of the potential of mean force and proposed to describe protein-protein interactions in a recent small-angle-scattering (SAS) experimental study. A highly simplified Yukawa (screened Coulomb) model of monomers and dimers of a charged globular protein (beta-lactoglobulin) in solution is considered. We test the accuracy of the RDF approximation, as a necessary complementary part of the previous experimental investigation, by comparison with the fluid structure predicted by approximate integral equations and exact Monte Carlo (MC) simulations. In the MC calculations, an Ewald construction for Yukawa potentials has been used to take into account the long-range part of the interactions in the weakly screened cases. Our results confirm that the perturbative first-order approximation is valid for this system even at strong Coulomb coupling, provided that the screening is not too weak (i.e., for Debye length smaller than monomer radius). A comparison of the MC results with integral equation calculations shows that both the hypernetted-chain (HNC) and Percus-Yevick closures have a satisfactory behavior under these regimes, with the HNC being superior throughout. The relevance of our findings for interpreting SAS results is also discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验