Block Kai Tobias, Frahm Jens
Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
J Magn Reson Imaging. 2005 Jun;21(6):657-68. doi: 10.1002/jmri.20320.
In view of recent applications in cardiovascular and functional brain imaging, this work revisits the basic performance characteristics of spiral imaging in direct comparison to echo-planar imaging (EPI) and conventional rapid gradient-echo imaging. Using both computer simulations and experiments on phantoms and human subjects at 2.9 T, the study emphasizes single-shot applications and addresses the design of a suitable trajectory, the choice of a gridding algorithm, and the sensitivity to experimental inadequacies. As a general result, the combination of a spiral trajectory with regridding of the k-space data poses no principle obstacle for high-quality imaging. On the other hand, experimental difficulties such as gradient deviations, resonance offset contributions, and concomitant field effects cause more pronounced and even less acceptable image artifacts than usually obtained for EPI. Moreover, when ignoring parallel imaging strategies that are also applicable to EPI, improvements of image quality via reduced acquisition periods are only achievable by interleaved multishot spirals because partial Fourier sampling and rectangular fields of view (FOVs) cannot be exploited for non-Cartesian trajectories. Taken together, while spiral imaging may find its niche applications, most high-speed imaging needs are more easily served by EPI.
鉴于螺旋成像在心血管和脑功能成像中的最新应用,本文重新审视了螺旋成像的基本性能特征,并将其与回波平面成像(EPI)和传统快速梯度回波成像进行直接比较。通过计算机模拟以及在2.9T磁场下对体模和人体受试者进行的实验,该研究着重于单次成像应用,并探讨了合适轨迹的设计、网格化算法的选择以及对实验缺陷的敏感性。总体而言,螺旋轨迹与k空间数据重网格化的结合对高质量成像并无原则性障碍。另一方面,诸如梯度偏差、共振偏移影响和伴随场效应等实验困难会导致比EPI通常出现的更为明显且更难以接受的图像伪影。此外,若不考虑同样适用于EPI的并行成像策略,通过缩短采集时间来提高图像质量仅能通过交错多激发螺旋实现,因为对于非笛卡尔轨迹无法采用部分傅里叶采样和矩形视野(FOV)。综上所述,虽然螺旋成像可能会找到其特定的应用领域,但大多数高速成像需求更易通过EPI来满足。