Suppr超能文献

通过非刚性配准到磁共振显微镜图像对蜜蜂大脑的共聚焦显微镜图像进行去扭曲。

Unwarping confocal microscopy images of bee brains by nonrigid registration to a magnetic resonance microscopy image.

作者信息

Rohlfing Torsten, Schaupp Frank, Haddad Daniel, Brandt Robert, Haase Axel, Menzel Randolf, Maurer Calvin R

机构信息

SRI International, Neuroscience Program, 333 Ravenswood Avenue, Menlo Park, California 94025, USA.

出版信息

J Biomed Opt. 2005 Mar-Apr;10(2):024018. doi: 10.1117/1.1896025.

Abstract

Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain.

摘要

共聚焦显微镜(CM)是一种强大的图像采集技术,在许多生物学应用中已得到广泛应用。它能够以高空间分辨率进行三维采集,并可获取多个不同通道的互补图像信息。然而,由于样本提取和制备过程,成像物体的形状可能与其在体内的外观有很大差异。磁共振显微镜(MRM)是磁共振成像的一种不断发展的变体,它利用高磁场和强磁梯度实现微观分辨率。与CM成像相比,MRM允许进行原位成像,并且几乎没有几何失真。我们建议通过使用MRM参考图像对CM图像进行去扭曲来结合这两种方法的优点。我们的方法包括一系列应用于MRM图像的图像处理算子,随后进行基于强度的两阶段配准,以计算CM图像和MRM图像之间的非刚性坐标变换。我们展示了使用20只蜜蜂大脑的CM图像和原位蜜蜂大脑的MRM图像所获得的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验