Suppr超能文献

结合分子动力学与格子玻尔兹曼方法:一种用于模拟(带电)胶体系统的混合方法。

Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.

作者信息

Chatterji Apratim, Horbach Jürgen

机构信息

Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany.

出版信息

J Chem Phys. 2005 May 8;122(18):184903. doi: 10.1063/1.1890905.

Abstract

We present a hybrid method for the simulation of colloidal systems that combines molecular dynamics (MD) with the Lattice Boltzmann (LB) scheme. The LB method is used as a model for the solvent in order to take into account the hydrodynamic mass and momentum transport through the solvent. The colloidal particles are propagated via MD and they are coupled to the LB fluid by viscous forces. With respect to the LB fluid, the colloids are represented by uniformly distributed points on a sphere. Each such point [with a velocity V(r) at any off-lattice position r] is interacting with the neighboring eight LB nodes by a frictional force F = xi0(V(r)-u(r)), with xi0 being a friction coefficient and u(r) being the velocity of the fluid at the position r. Thermal fluctuations are introduced in the framework of fluctuating hydrodynamics. This coupling scheme has been proposed recently for polymer systems by Ahlrichs and Dunweg [J. Chem. Phys. 111, 8225 (1999)]. We investigate several properties of a single colloidal particle in a LB fluid, namely, the effective Stokes friction and long-time tails in the autocorrelation functions for the translational and rotational velocity. Moreover, a charged colloidal system is considered consisting of a macroion, counterions, and coions that are coupled to a LB fluid. We study the behavior of the ions in a constant electric field. In particular, an estimate of the effective charge of the macroion is yielded from the number of counterions that move with the macroion in the direction of the electric field.

摘要

我们提出了一种用于模拟胶体系统的混合方法,该方法将分子动力学(MD)与格子玻尔兹曼(LB)方案相结合。LB方法被用作溶剂的模型,以便考虑通过溶剂的流体动力学质量和动量传输。胶体颗粒通过MD进行传播,并通过粘性力与LB流体耦合。对于LB流体,胶体由球面上均匀分布的点表示。每个这样的点[在任何非晶格位置r处具有速度V(r)]通过摩擦力F = ξ₀(V(r)-u(r))与相邻的八个LB节点相互作用,其中ξ₀是摩擦系数,u(r)是位置r处流体的速度。热涨落在涨落流体动力学框架内引入。这种耦合方案最近由Ahlrichs和Dunweg [《化学物理杂志》111, 8225 (1999)] 针对聚合物系统提出。我们研究了LB流体中单个胶体颗粒的几个性质,即有效斯托克斯摩擦力以及平移和旋转速度自相关函数中的长时间尾部。此外,考虑了一个带电胶体系统,它由一个大离子、抗衡离子和共离子组成,这些离子与LB流体耦合。我们研究了离子在恒定电场中的行为。特别是,从沿电场方向与大离子一起移动的抗衡离子数量得出大离子有效电荷的估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验