Suppr超能文献

使用连贯语音低频带进行韵律感觉整合的大脑机制

Cerebral mechanisms of prosodic sensory integration using low-frequency bands of connected speech.

作者信息

Hesling Isabelle, Dilharreguy Bixente, Clément Sylvain, Bordessoules Martine, Allard Michèle

机构信息

Laboratoire d'Imagerie Moléculaire et Fonctionnelle ERT CNRS 5543, Université Victor Ségalen, Bordeaux, France.

出版信息

Hum Brain Mapp. 2005 Nov;26(3):157-69. doi: 10.1002/hbm.20147.

Abstract

Even if speech perception has been reported to involve both left and right hemispheres, converging data have posited the existence of a functional asymmetry at the level of secondary auditory cortices. Using fMRI in 12 right-handed French men listening passively to long connected speech stimuli, we addressed the question of neuronal networks involved in the integration of low frequency bands of speech by comparing 1) differences in brain activity in two listening conditions (FN, NF) differing in the integration of pitch modulations (in FN, low frequencies, obtained by a low-pass filter, are addressed to the left ear while the whole acoustic message is simultaneously addressed to the right ear, NF being the reverse position); 2) differences in brain activity induced by high and low degrees of prosodic expression (expressive vs. flat); and 3) effects of the same connected speech stimulus in the two listening conditions. Each stimulus induced a specific cerebral network, the flat one weakening activations which were mainly reduced to the bilateral STG for both listening conditions. In the expressive condition, the specific sensory integration FN results in an increase of the articulatory loop and new recruitments such as right BA6-44, left BA39-40, the left posterior insula and the bilateral BA30. This finding may be accounted for by the existence of temporal windows differing both in length and in acoustic cues decoding, strengthening the "asymmetric sampling in time" hypothesis posited by Poeppel (Speech Commun 2003; 41:245-255). Such an improvement of prosodic integration could find applications in the rehabilitation of some speech disturbances.

摘要

即使已有报道称言语感知涉及左右半球,但越来越多的数据表明,在次级听觉皮层水平存在功能不对称。我们对12名右利手法国男性进行功能磁共振成像(fMRI)研究,让他们被动聆听长时间连贯的言语刺激,通过比较以下内容来探讨参与言语低频带整合的神经网络问题:1)两种聆听条件(FN,NF)下的大脑活动差异,这两种条件在音高调制整合方面有所不同(在FN条件下,通过低通滤波器获得的低频信号传至左耳,同时整个声学信息传至右耳,NF条件则相反);2)高低不同程度韵律表达所诱发的大脑活动差异(富有表现力的与平淡的);3)同一连贯言语刺激在两种聆听条件下的效果。每个刺激都诱发了特定的脑网络,平淡刺激减弱了激活,在两种聆听条件下主要都减少到双侧颞上回(STG)。在富有表现力的条件下,特定的感觉整合FN导致发音回路增强以及新的脑区被激活,如右侧BA6 - 44、左侧BA39 - 40、左侧后岛叶和双侧BA30。这一发现可能是由于存在长度和声学线索解码都不同的时间窗口,从而强化了Poeppel提出的“时间上的不对称采样”假说(《言语通讯》2003年;41:245 - 255)。这种韵律整合的改善可能在某些言语障碍的康复中得到应用。

相似文献

2
Cerebral mechanisms of prosodic integration: evidence from connected speech.
Neuroimage. 2005 Feb 15;24(4):937-47. doi: 10.1016/j.neuroimage.2004.11.003. Epub 2004 Dec 19.
3
Determining hierarchical functional networks from auditory stimuli fMRI.
Hum Brain Mapp. 2006 May;27(5):462-70. doi: 10.1002/hbm.20245.
4
5
Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study.
Eur J Neurosci. 2004 Nov;20(9):2447-56. doi: 10.1111/j.1460-9568.2004.03687.x.
6
Brain-speech alignment enhances auditory cortical responses and speech perception.
J Neurosci. 2012 Jan 4;32(1):275-81. doi: 10.1523/JNEUROSCI.3970-11.2012.
7
Neural predictors of auditory word learning.
Neuroreport. 2008 Jan 22;19(2):215-9. doi: 10.1097/WNR.0b013e3282f46ea9.
8
Neural bases of categorization of simple speech and nonspeech sounds.
Hum Brain Mapp. 2006 Aug;27(8):636-51. doi: 10.1002/hbm.20207.
9
Hemispheric dissociation in access to the human semantic system.
Neuron. 2003 May 8;38(3):499-506. doi: 10.1016/s0896-6273(03)00199-5.

引用本文的文献

2
Neural Correlates of Mentalizing in Individuals With Clinical High Risk for Schizophrenia: ALE Meta-Analysis.
Front Psychiatry. 2021 Apr 20;12:634015. doi: 10.3389/fpsyt.2021.634015. eCollection 2021.
3
How do morphological alterations caused by chronic pain distribute across the brain? A meta-analytic co-alteration study.
Neuroimage Clin. 2017 Dec 21;18:15-30. doi: 10.1016/j.nicl.2017.12.029. eCollection 2018.
4
Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairments.
Front Psychol. 2016 May 30;7:791. doi: 10.3389/fpsyg.2016.00791. eCollection 2016.
5
Multi-time resolution analysis of speech: evidence from psychophysics.
Front Neurosci. 2015 Jun 16;9:214. doi: 10.3389/fnins.2015.00214. eCollection 2015.
6
A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading.
Neuroimage. 2012 Aug 15;62(2):816-47. doi: 10.1016/j.neuroimage.2012.04.062. Epub 2012 May 12.
7
8
"It's Not What You Say, But How You Say it": A Reciprocal Temporo-frontal Network for Affective Prosody.
Front Hum Neurosci. 2010 Feb 26;4:19. doi: 10.3389/fnhum.2010.00019. eCollection 2010.
9
Neuroanatomical markers of speaking Chinese.
Hum Brain Mapp. 2009 Dec;30(12):4108-15. doi: 10.1002/hbm.20832.
10
Temporal integration in vowel perception.
J Acoust Soc Am. 2009 Mar;125(3):1704-11. doi: 10.1121/1.3077219.

本文引用的文献

1
Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception.
J Cogn Neurosci. 1996 Winter;8(1):29-46. doi: 10.1162/jocn.1996.8.1.29.
2
The cortical representation of speech.
J Cogn Neurosci. 1993 Fall;5(4):467-79. doi: 10.1162/jocn.1993.5.4.467.
3
PET Studies of Auditory and Phonological Processing: Effects of Stimulus Characteristics and Task Demands.
J Cogn Neurosci. 1995 Summer;7(3):357-75. doi: 10.1162/jocn.1995.7.3.357.
4
A hierarchical model of temporal perception.
Trends Cogn Sci. 1997 May;1(2):56-61. doi: 10.1016/S1364-6613(97)01008-5.
5
Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language.
Cognition. 2004 May-Jun;92(1-2):67-99. doi: 10.1016/j.cognition.2003.10.011.
7
The neuroanatomical and functional organization of speech perception.
Trends Neurosci. 2003 Feb;26(2):100-7. doi: 10.1016/S0166-2236(02)00037-1.
8
FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences.
Hum Brain Mapp. 2002 Oct;17(2):73-88. doi: 10.1002/hbm.10042.
9
Perception of sound-source motion by the human brain.
Neuron. 2002 Mar 28;34(1):139-48. doi: 10.1016/s0896-6273(02)00637-2.
10
Structure and function of auditory cortex: music and speech.
Trends Cogn Sci. 2002 Jan 1;6(1):37-46. doi: 10.1016/s1364-6613(00)01816-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验