Wiedmann M, Wang X, Tang X, Han M, Li M, Mao Z
Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA.
J Neurosci Res. 2005 Jul 15;81(2):226-34. doi: 10.1002/jnr.20556.
Survival signals such as insulin-like growth factor-1 (IGF-1) or membrane depolarization convey their neuronal protective effects through the activation of signaling networks and nuclear factors. In cerebellar granule neurons, IGF-1 mediates survival primarily through the PI3K/Akt pathway. The function of the transcription factor myocyte enhancer factor-2 (MEF2) is required for mediating membrane depolarization-dependent neuronal survival. However, whether PI3K/Akt regulates MEF2 and the role of MEF2 in IGF-1-mediated survival of neurons are unknown. In addition, the contribution of the PI3K/Akt pathway in membrane depolarization-induced neuronal survival remains undefined. We show here that the PI3K/Akt pathway promotes the survival of cerebellar granule neurons derived from Long-Evans rats following IGF-1 stimulation or membrane depolarization through regulation of MEF2 activity. IGF-1 stimulated the gene transactivation activity of MEF2 and its DNA binding potential. Moreover, regulation of MEF2 function by IGF-1 was dependent on the activity of the PI3K/Akt signaling pathway. Blocking MEF2 function reduced IGF-1-induced survival of cerebellar granule neurons. Membrane depolarization stimulated phosphorylation of Akt in cerebellar granule neurons. Blocking of the PI3K/Akt pathway with either a pharmacological inhibitor of PI3K, LY294002, or dominant negative mutants of PI3K and Akt inhibited the membrane depolarization-induced increase in MEF2 transactivation as well as its DNA binding activity and reduced neuronal survival. Together, these findings provide clear evidence to support an important role of the PI3K/Akt pathway in the regulation of nuclear survival factor MEF2 upon either IGF-1 stimulation or membrane depolarization, thus placing MEF2 as a novel downstream effector of the PI3K/Akt pathway in neurons.
胰岛素样生长因子-1(IGF-1)或膜去极化等存活信号通过激活信号网络和核因子来传递其神经保护作用。在小脑颗粒神经元中,IGF-1主要通过PI3K/Akt途径介导存活。转录因子肌细胞增强因子2(MEF2)的功能是介导膜去极化依赖性神经存活所必需的。然而,PI3K/Akt是否调节MEF2以及MEF2在IGF-1介导的神经元存活中的作用尚不清楚。此外,PI3K/Akt途径在膜去极化诱导的神经存活中的作用仍不明确。我们在此表明,PI3K/Akt途径通过调节MEF2活性,在IGF-1刺激或膜去极化后促进源自Long-Evans大鼠的小脑颗粒神经元的存活。IGF-1刺激了MEF2的基因反式激活活性及其DNA结合潜力。此外,IGF-1对MEF2功能的调节依赖于PI3K/Akt信号通路的活性。阻断MEF2功能可降低IGF-1诱导的小脑颗粒神经元存活。膜去极化刺激了小脑颗粒神经元中Akt的磷酸化。用PI3K的药理抑制剂LY294002或PI3K和Akt的显性负突变体阻断PI3K/Akt途径,可抑制膜去极化诱导的MEF2反式激活增加及其DNA结合活性,并降低神经元存活。总之,这些发现提供了明确的证据,支持PI3K/Akt途径在IGF-1刺激或膜去极化时对核存活因子MEF2的调节中起重要作用,从而将MEF2定位为神经元中PI3K/Akt途径的一个新的下游效应器。