Guiramand Janique, Martin Alexandra, de Jesus Ferreira Marie-Celeste, Cohen-Solal Catherine, Vignes Michel, Récasens Max
CNRS FRE 2693, Laboratoire de Plasticité Cérébrale, Université Montpellier II CC90, Montpellier, France.
J Neurosci Res. 2005 Jul 15;81(2):199-207. doi: 10.1002/jnr.20557.
Extracellular glutamate is kept below a toxic level by glial and neuronal glutamate transporters. Here we show that the transportable glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (t-PDC) induced cell death in mature, but not in immature, hippocampal neuron-enriched cultures. The cell death produced by a 24-hr treatment with t-PDC was dose-dependent and reached 85% of the cell population at a 250 microM concentration at 23 days in vitro (DIV). Immunocytochemistry experiments showed that, under these experimental conditions, t-PDC killed not only neurons as expected but also glial cells. The N-methyl-D-aspartate (NMDA) antagonist D-2-aminophosphonovalerate (D-APV; 250 microM) only partially reversed this toxicity, completely protecting the neuronal cell population but not the glial population. The antioxidant compounds alpha-tocopherol or Trolox, used at concentrations that reverse the oxidative stress-induced toxicity, did not block the gliotoxicity specifically produced by t-PDC in the presence of D-APV. The nontransportable glutamate uptake inhibitor DL-threo-beta-benzyloxyaspartate (TBOA) elicited cell death only in mature, but not in immature, hippocampal cultures. The TBOA toxic effect was dose dependent and reached a plateau at 100 microM in 23-DIV cultures. About 50% of the cell population died. TBOA affected essentially the neuronal population. D-APV (250 microM) completely reversed this toxicity. It is concluded that nontransportable glutamate uptake inhibitors are neurotoxic via overactivation of NMDA receptors, whereas transportable glutamate uptake inhibitors induce both an NMDA-dependent neurotoxicity and an NMDA- and oxidative stress-independent gliotoxicity, but only in mature hippocampal cultures.
神经胶质细胞和神经元的谷氨酸转运体可将细胞外谷氨酸维持在毒性水平以下。我们在此表明,可转运的谷氨酸摄取抑制剂L-反式-吡咯烷-2,4-二羧酸(t-PDC)可诱导成熟海马神经元富集培养物中的细胞死亡,但对未成熟培养物无此作用。在体外培养23天(DIV)时,250微摩尔浓度的t-PDC处理24小时所导致的细胞死亡呈剂量依赖性,细胞群体死亡率达85%。免疫细胞化学实验表明,在这些实验条件下,t-PDC不仅如预期那样杀死神经元,还杀死神经胶质细胞。N-甲基-D-天冬氨酸(NMDA)拮抗剂D-2-氨基磷酸戊酸(D-APV;250微摩尔)只能部分逆转这种毒性,可完全保护神经元细胞群体,但不能保护神经胶质细胞群体。抗氧化化合物α-生育酚或曲洛克在可逆转氧化应激诱导毒性的浓度下使用时,不能阻断在D-APV存在下t-PDC特异性产生的神经胶质毒性。不可转运的谷氨酸摄取抑制剂DL-苏式-β-苄氧基天冬氨酸(TBOA)仅在成熟海马培养物中诱导细胞死亡,对未成熟培养物无此作用。TBOA的毒性作用呈剂量依赖性,在23天DIV培养物中,100微摩尔时达到平台期。约50%的细胞群体死亡。TBOA主要影响神经元群体。D-APV(250微摩尔)可完全逆转这种毒性。结论是,不可转运的谷氨酸摄取抑制剂通过过度激活NMDA受体产生神经毒性,而可转运的谷氨酸摄取抑制剂不仅诱导NMDA依赖性神经毒性,还诱导NMDA和氧化应激非依赖性神经胶质毒性,但仅在成熟海马培养物中如此。