Whitson Stefanie R, LeStourgeon Wallace M, Krezel Andrzej M
Department of Biological Sciences, 465 21st Ave. South, Vanderbilt University, Nashville, TN 37232, USA.
J Mol Biol. 2005 Jul 8;350(2):319-37. doi: 10.1016/j.jmb.2005.05.002.
During active cell division, heterogeneous nuclear ribonucleoprotein (hnRNP) C is one of the most abundant proteins in the nucleus. hnRNP C exists as a stable tetramer that binds about 230 nucleotides of pre-mRNA and functions in vivo to package nascent transcripts and nucleate assembly of the 40 S hnRNP complex. Previous studies have shown that monomers lacking or possessing mutant oligomerization domains bind RNA with low affinity, strongly suggesting a cooperative protomer-RNA binding mode. In order to understand the role of the oligomerization domain in defining the biological functions and structure of hnRNP C tetramers, we have determined the high-resolution NMR structure of the oligomerization interface that is formed at the core of the complex, examining specific molecular interactions that drive assembly and contribute to the structural integrity of the tetramer. The determined structure reveals an antiparallel four-helix coiled coil, where classically described knobs-into-holes packing interactions at interhelical contact surfaces are optimized so that side-chains interdigitate to create an even distribution of hydrophobic surfaces along the core. While the stoichiometry of the complex appears to be primarily specified by occlusion of hydrophobic surfaces, particularly the interfacial residue L198, from solvent, helix orientation is primarily determined by electrostatic attractions across helix interfaces. The creation of potential interaction surfaces for other hnRNP C domains along the coiled coil exterior and the assembly of oligomerization interfaces in an antiparallel orientation shape the tertiary fold of full-length monomers and juxtapose RNA-binding elements at distal surfaces of the tetrameric complex in the quaternary assembly. In addition, we discuss the specific challenges encountered in structure determination of this symmetric oligomer by NMR methods, specifically in sorting ambiguous interatomic distance constraints into classes that define different elements of the coiled coil structure.
在活跃的细胞分裂过程中,不均一核核糖核蛋白(hnRNP)C是细胞核中含量最为丰富的蛋白质之一。hnRNP C以稳定的四聚体形式存在,它能结合约230个核苷酸的前体mRNA,并在体内发挥作用,包裹新生转录本并启动40S hnRNP复合体的组装。先前的研究表明,缺乏或拥有突变寡聚化结构域的单体与RNA的结合亲和力较低,这强烈暗示了一种协同的亚基-RNA结合模式。为了理解寡聚化结构域在定义hnRNP C四聚体的生物学功能和结构中的作用,我们确定了在复合体核心形成的寡聚化界面的高分辨率核磁共振结构,研究了驱动组装并有助于四聚体结构完整性的特定分子相互作用。所确定的结构揭示了一个反平行的四螺旋卷曲螺旋,其中在螺旋间接触表面经典描述的旋钮-入-孔堆积相互作用得到优化,使得侧链相互交错,从而在核心区域形成疏水表面的均匀分布。虽然复合体的化学计量似乎主要由疏水表面的封闭决定,特别是界面残基L198与溶剂的隔离,但螺旋方向主要由跨螺旋界面的静电吸引决定。沿着卷曲螺旋外部为其他hnRNP C结构域创建潜在的相互作用表面,以及以反平行方向组装寡聚化界面,塑造了全长单体的三级折叠,并在四级组装中将RNA结合元件并列在四聚体复合体的远端表面。此外,我们讨论了通过核磁共振方法确定这种对称寡聚体结构时遇到的具体挑战,特别是在将模糊的原子间距离约束分类为定义卷曲螺旋结构不同元素的类别方面。