Krummel B, Chamberlin M J
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
J Mol Biol. 1992 May 20;225(2):221-37. doi: 10.1016/0022-2836(92)90917-9.
Ternary complexes containing RNA polymerase, DNA and nascent RNA are intermediates in all RNA syntheses and are the targets of cellular factors that regulate RNA chain elongation and termination. Hence, elucidation of the structure and properties of these complexes is essential for understanding the catalytic and regulatory properties of the enzyme. We have described methods to prepare ternary complexes halted at defined positions along the DNA template, using specific dinucleotides to prime chain initiation along with limited subsets of the NTP substrates. Study of these static, halted complexes may provide information about the structure and properties of the transient elongation intermediates involved in transcription, although there is no necessary direct relationship between the two. Using specific halted complexes as precursors, we have walked the RNA polymerase along its template, producing defined ternary complexes at unique sites along two different transcription units. These complexes differ significantly from one another in many biochemical properties, in dramatic contrast to the properties expected from models that postulate a monotonous structure for elongation intermediates. These differences include variations in complex mobility during electrophoresis in non-denaturing polyacrylamide gels, in thermal stability and in stability to dissociation. Some halted complexes lose the ability to resume elongation when presented with the missing substrates. These "dead end" complexes must represent metastable structures in which elongation is blocked, and demonstrate clearly that not all halted complexes can be considered true intermediates in elongation. Other halted complexes rapidly cleave the nascent RNA seven nucleotides from the 3' terminus, in an unexpected and unusual biochemical reaction. These differences in properties among complexes bearing transcripts that differ by only one or a few nucleotides suggest that they have distinct structures. These differences must be due, at least in part, to differences in the template sequence and the length of the transcript. The results raise important questions as to the actual mechanism of transcription elongation, and suggest that it is a much more complex process than previously assumed.
包含RNA聚合酶、DNA和新生RNA的三元复合物是所有RNA合成过程中的中间体,并且是调节RNA链延伸和终止的细胞因子的作用靶点。因此,阐明这些复合物的结构和特性对于理解该酶的催化和调节特性至关重要。我们已经描述了制备沿DNA模板在特定位置停止的三元复合物的方法,使用特定的二核苷酸引发链起始以及NTP底物的有限子集。对这些静态的、停止的复合物的研究可能会提供有关转录过程中涉及的瞬时延伸中间体的结构和特性的信息,尽管两者之间没有必然的直接关系。以特定的停止复合物为前体,我们使RNA聚合酶沿着其模板移动,在两个不同转录单元的独特位点产生特定的三元复合物。这些复合物在许多生化特性上彼此显著不同,这与假设延伸中间体具有单调结构的模型所预期的特性形成了鲜明对比。这些差异包括在非变性聚丙烯酰胺凝胶中电泳时复合物迁移率的变化、热稳定性以及解离稳定性。一些停止的复合物在提供缺失的底物时失去了恢复延伸的能力。这些“死端”复合物必定代表延伸受阻的亚稳结构,并且清楚地表明并非所有停止的复合物都可被视为延伸过程中的真正中间体。其他停止的复合物以一种意想不到的异常生化反应迅速从新生RNA的3'末端切割掉七个核苷酸。携带仅相差一个或几个核苷酸的转录本的复合物之间的这些特性差异表明它们具有不同的结构。这些差异至少部分归因于模板序列和转录本长度的差异。这些结果引发了关于转录延伸实际机制的重要问题,并表明这是一个比先前假设更为复杂的过程。