Suppr超能文献

使用游程差分矩阵的三维超声纹理分类

3-D ultrasound texture classification using run difference matrix.

作者信息

Chen Wei-Ming, Chang Ruey-Feng, Kuo Shou-Jen, Chang Cheng-Shyong, Moon Woo Kyung, Chen Shou-Tung, Chen Dar-Ren

机构信息

Department of Information Management, National Dong Hwa University, Hualien, Taiwan.

出版信息

Ultrasound Med Biol. 2005 Jun;31(6):763-70. doi: 10.1016/j.ultrasmedbio.2005.01.014.

Abstract

Ultrasonography is one of the most useful diagnostic tools for human soft tissue and it is in routine use in nearly all hospitals and many physicians' offices and clinics. However, the diagnosis mostly depends upon the personal experiences of the physicians. Moreover, the surface features and internal architecture of a tumor are not easy to be demonstrated simultaneously using the conventional two-dimensional (2-D) ultrasound. Recently, three-dimensional (3-D) ultrasound has been developed and allows the physician to view the 3-D anatomy. 3-D breast US can provide transverse, longitudinal planes as well as in addition simultaneously the coronal plane. This additional information has been proved to be helpful for clinical applications. In this paper, a new approach of texture classification of 3-D ultrasound breast diagnosis using run difference matrix with neural networks is developed. The test 3-D US image database includes 54 malignant and 161 benign tumors. In the experiments, the area index A(z) under the ROC curve of the proposal 3-D RDM method can achieve 0.9680. The accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the proposed 3-D RDM method is 91.9%(148/161), 88.9%(48/54), 93.5%(100/107), 87.3%(48/55), and 94.3%(100/105), respectively.

摘要

超声检查是用于人体软组织的最有用的诊断工具之一,几乎在所有医院以及许多医生办公室和诊所都有常规使用。然而,诊断大多取决于医生的个人经验。此外,使用传统的二维(2-D)超声不易同时显示肿瘤的表面特征和内部结构。最近,三维(3-D)超声已得到发展,使医生能够查看三维解剖结构。三维乳腺超声可以提供横向、纵向平面,此外还能同时提供冠状平面。这一额外信息已被证明对临床应用有帮助。在本文中,开发了一种使用游程差分矩阵和神经网络对三维超声乳腺诊断进行纹理分类的新方法。测试的三维超声图像数据库包括54个恶性肿瘤和161个良性肿瘤。在实验中,所提出的三维游程差分矩阵(3-D RDM)方法在ROC曲线下的面积指数A(z)可达0.9680。所提出的三维RDM方法的准确率、灵敏度、特异性、阳性预测值和阴性预测值分别为91.9%(148/161)、88.9%(48/54)、93.5%(100/107)、87.3%(48/55)和94.3%(100/105)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验