Suppr超能文献

利用高斯过程在微阵列基因表达数据中发现生物标志物。

Biomarker discovery in microarray gene expression data with Gaussian processes.

作者信息

Chu Wei, Ghahramani Zoubin, Falciani Francesco, Wild David L

机构信息

Gatsby Computational Neuroscience Unit, University College London, UK.

出版信息

Bioinformatics. 2005 Aug 15;21(16):3385-93. doi: 10.1093/bioinformatics/bti526. Epub 2005 Jun 2.

Abstract

MOTIVATION

In clinical practice, pathological phenotypes are often labelled with ordinal scales rather than binary, e.g. the Gleason grading system for tumour cell differentiation. However, in the literature of microarray analysis, these ordinal labels have been rarely treated in a principled way. This paper describes a gene selection algorithm based on Gaussian processes to discover consistent gene expression patterns associated with ordinal clinical phenotypes. The technique of automatic relevance determination is applied to represent the significance level of the genes in a Bayesian inference framework.

RESULTS

The usefulness of the proposed algorithm for ordinal labels is demonstrated by the gene expression signature associated with the Gleason score for prostate cancer data. Our results demonstrate how multi-gene markers that may be initially developed with a diagnostic or prognostic application in mind are also useful as an investigative tool to reveal associations between specific molecular and cellular events and features of tumour physiology. Our algorithm can also be applied to microarray data with binary labels with results comparable to other methods in the literature.

摘要

动机

在临床实践中,病理表型通常用有序尺度而非二元尺度进行标记,例如肿瘤细胞分化的 Gleason 分级系统。然而,在微阵列分析的文献中,这些有序标签很少以一种有原则的方式进行处理。本文描述了一种基于高斯过程的基因选择算法,以发现与有序临床表型相关的一致基因表达模式。自动相关性确定技术被应用于在贝叶斯推理框架中表示基因的显著性水平。

结果

通过与前列腺癌数据的 Gleason 评分相关的基因表达特征,证明了所提出算法对有序标签的有用性。我们的结果表明,最初可能出于诊断或预后应用目的而开发的多基因标记,作为揭示特定分子和细胞事件与肿瘤生理学特征之间关联的研究工具也很有用。我们的算法也可以应用于具有二元标签的微阵列数据,其结果与文献中的其他方法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验