Kanjhan Refik, Coulson Elizabeth J, Adams David J, Bellingham Mark C
School of Biomedical Sciences, University of Queensland, Australia.
J Pharmacol Exp Ther. 2005 Sep;314(3):1353-61. doi: 10.1124/jpet.105.085928. Epub 2005 Jun 9.
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K(+) (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1+GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca(2+)-activated large conductance K(+) channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1+GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K(+) channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K(+) channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1+GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca(2+), Mg(2+), Zn(2+), and Ba(2+)) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K(+) currents, but Cs(+)-blocked hyperpolarization-activated inward currents including I(H) were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca(2+)-activated K(+) channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
蜂毒明肽是一种来自蜜蜂毒液的短肽,据报道它能特异性阻断内向整流钾(Kir)通道,包括G蛋白偶联内向整流钾通道(GIRK)1 + GIRK4异源多聚体和ROMK1同源多聚体。在本研究中,检测了蜂毒明肽的一种稳定且功能相似的衍生物——蜂毒明肽-Q,对重组人电压依赖性钙激活大电导钾通道(BK或MaxiK;α亚基或hSlo1同源多聚体)以及在非洲爪蟾卵母细胞和培养的新生小鼠背根神经节(DRG)神经元中表达的小鼠内向整流GIRK1 + GIRK2(即Kir3.1和Kir3.2)异源多聚体钾通道的影响。在双电极电压钳制的卵母细胞中,蜂毒明肽-Q(1 - 100 nM)以使用和浓度依赖性方式抑制BK型钾通道。我们还证实了蜂毒明肽-Q对重组GIRK1 + GIRK2异源多聚体的抑制作用,其对去滤泡卵母细胞中对细胞外二价阳离子(Ca(2+)、Mg(2+)、Zn(2+)和Ba(2+))敏感的内源性去极化和超极化激活电流没有影响。在电压钳制的DRG神经元中,蜂毒明肽-Q电压依赖性和使用依赖性地抑制外向整流钾电流,但Cs(+)阻断的超极化激活内向电流(包括I(H))对蜂毒明肽-Q、巴氯芬、钡和锌不敏感,这表明新生小鼠中不存在功能性GIRK通道。在电流钳制条件下,蜂毒明肽-Q阻断DRG神经元超极化后的动作电位(AHP)并延长动作电位持续时间。综上所述,这些结果表明蜂毒明肽-Q的阻断作用并非特异性针对Kir通道,并且对重组BK通道和天然神经元AHP电流的阻断是使用依赖性的。蜂毒明肽-Q在纳摩尔范围内通过不同机制抑制特定类型的Kir和电压依赖性钙激活钾通道,这可能对疼痛生理学和治疗有影响。