Geets J, Vangronsveld J, Borremans B, Diels L, van der Lelie D
VITO, Vlaamse Instelling voor Technologisch Onderzoek, Environmental Technology Centre, Boeretang 200, 2400 Mol, Belgium.
Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001;66(3a):41-8.
Sulfate- and metal reducing bacteria (SMRBs) are known for their capacity to reduce and precipitate heavy metals and metalloids (HMM) as metalsulfides (Luptáková A et al, 1998), which have the characteristic of forming stable precipitates due to their very low solubility product. Therefore, we examined the potential of using the activity of SMRBs to create a bioreactive zone or barrier for the in situ precepitation of heavy metals as a remediation strategy for heavy metal contaminated groundwater. In order to obtain insight in the ongoing biological processes for using this information to direct or optimize the in situ HMM- precipitation process, a monitoring strategy for sulfate- reduction activity of SMRBs must be designed using molecular methods. Here, we report the results of batch and column experiments which demonstrate the feasibility to stimulate the endogenous SRB- population, resulting in the in situ precipitation of HMM as sulfide complexes. Moreover, the sustainability of the in situ HMM precipitation wa s shown. For the development of molecular monitoring methods, the community structures of different bacterial consortia, obtained from bioreactors, was analysed by shotgun cloning of total community DNA followed by sequencing of the 16S rRNA- gene. The SRB- specific 16S rRNA- primerset SRB385R- 907F was used but this specificity to specifically amplify the 16S rRNA- gene of SRBs was low. Also, the dsr (dissimilatory sulfite reductase)- gene specific DSR1F- DSR4R primerset showed sometimes after amplification of the dsr- genes as part of the community structure analysis satellite bands on agarose gel. Present work is concentrating on the isolation and identification of SRB- strains in the different bacterial cultures. Shotgun cloning of the 16S rRNA- and dsr- gene of the strains and total community DNA will give the information that is necessary for the optimization of existing SRB- specific primers and design of new primers. These primers will be used for the development of monitoring techniques.
硫酸盐还原菌和金属还原菌(SMRB)以其将重金属和类金属(HMM)还原并沉淀为金属硫化物的能力而闻名(Luptáková A等人,1998年),由于其极低的溶度积,金属硫化物具有形成稳定沉淀物的特性。因此,我们研究了利用SMRB的活性创建生物反应区或屏障,以便原位沉淀重金属,作为重金属污染地下水修复策略的潜力。为了深入了解正在进行的生物过程,以便利用这些信息指导或优化原位HMM沉淀过程,必须使用分子方法设计一种监测SMRB硫酸盐还原活性的策略。在此,我们报告了批次实验和柱实验的结果,这些实验证明了刺激内源性SRB种群的可行性,从而实现HMM作为硫化物络合物的原位沉淀。此外,还展示了原位HMM沉淀的可持续性。为了开发分子监测方法,通过对总群落DNA进行鸟枪法克隆,然后对16S rRNA基因进行测序,分析了从生物反应器获得的不同细菌群落的结构。使用了SRB特异性的16S rRNA引物对SRB385R - 907F,但该引物对特异性扩增SRB的16S rRNA基因的能力较低。此外,异化亚硫酸盐还原酶(dsr)基因特异性的DSR1F - DSR4R引物对在作为群落结构分析一部分扩增dsr基因后,有时在琼脂糖凝胶上会出现卫星带。目前的工作集中在不同细菌培养物中SRB菌株的分离和鉴定。对菌株的16S rRNA和dsr基因以及总群落DNA进行鸟枪法克隆,将为优化现有的SRB特异性引物和设计新引物提供必要信息。这些引物将用于开发监测技术。