Nielsen David R, Daugulis Andrew J, McLellan P James
Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Biotechnol Bioeng. 2005 Sep 20;91(6):773-7. doi: 10.1002/bit.20541.
This communication proposes a mechanistic modification to a recently published method for analyzing oxygen mass transfer in two-phase partitioning bioreactors (Nielsen et al., 2003), and corrects an oversight in that paper. The newly proposed modification replaces the earlier empirical approach, which treated the two liquid phases as a single, homogeneous liquid phase, with a two-phase mass transfer model of greater fundamental rigor. Additionally, newly developed empirical models are presented that predict the mass transfer coefficient of oxygen absorption in both aqueous medium and an organic phase (n-hexadecane) as a function of bioreactor operating conditions. Experimental values and theoretical predictions of mass transfer coefficients in two-phase dispersions, k(L)a(TP), are compared. The revised approach more clearly demonstrates the potential for oxygen mass transfer enhancement by organic phase addition, one of the motivations for employing a distinct second phase in a partitioning bioreactor.
本通讯对最近发表的用于分析两相分配生物反应器中氧传质的方法(Nielsen等人,2003年)提出了一种机理修正,并纠正了该论文中的一个疏忽。新提出的修正方法用一个更具基本严谨性的两相传质模型取代了早期的经验方法,早期方法将两个液相视为单一的均相液相。此外,还提出了新开发的经验模型,该模型预测了氧在水相介质和有机相(正十六烷)中的吸收传质系数与生物反应器操作条件的函数关系。比较了两相分散体系中传质系数k(L)a(TP)的实验值和理论预测值。修订后的方法更清楚地证明了通过添加有机相增强氧传质的潜力,这是在分配生物反应器中采用独特的第二相的动机之一。