Suppr超能文献

挖掘芯片级免疫沉淀(ChIP-chip)数据以寻找转录因子和辅因子结合位点。

Mining ChIP-chip data for transcription factor and cofactor binding sites.

作者信息

Smith Andrew D, Sumazin Pavel, Das Debopriya, Zhang Michael Q

机构信息

Cold Spring Harbor Laboratory 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

出版信息

Bioinformatics. 2005 Jun;21 Suppl 1:i403-12. doi: 10.1093/bioinformatics/bti1043.

Abstract

MOTIVATION

Identification of single motifs and motif pairs that can be used to predict transcription factor localization in ChIP-chip data, and gene expression in tissue-specific microarray data.

RESULTS

We describe methodology to identify de novo individual and interacting pairs of binding site motifs from ChIP-chip data, using an algorithm that integrates localization data directly into the motif discovery process. We combine matrix-enumeration based motif discovery with multivariate regression to evaluate candidate motifs and identify motif interactions. When applied to the HNF localization data in liver and pancreatic islets, our methods produce motifs that are either novel or improved known motifs. All motif pairs identified to predict localization are further evaluated according to how well they predict expression in liver and islets and according to how conserved are the relative positions of their occurrences. We find that interaction models of HNF1 and CDP motifs provide excellent prediction of both HNF1 localization and gene expression in liver. Our results demonstrate that ChIP-chip data can be used to identify interacting binding site motifs.

AVAILABILITY

Motif discovery programs and analysis tools are available on request from the authors.

摘要

动机

识别可用于预测染色质免疫沉淀芯片(ChIP-chip)数据中转录因子定位以及组织特异性微阵列数据中基因表达的单个基序和基序对。

结果

我们描述了一种从ChIP-chip数据中识别从头开始的单个结合位点基序和相互作用基序对的方法,该方法使用一种将定位数据直接整合到基序发现过程中的算法。我们将基于矩阵枚举的基序发现与多元回归相结合,以评估候选基序并识别基序相互作用。当应用于肝脏和胰岛中的肝细胞核因子(HNF)定位数据时,我们的方法产生的基序要么是新的,要么是对已知基序的改进。根据预测肝脏和胰岛中基因表达的能力以及其出现的相对位置的保守程度,对所有识别出的用于预测定位的基序对进行进一步评估。我们发现HNF1和CDP基序的相互作用模型对肝脏中HNF1的定位和基因表达都提供了出色的预测。我们的结果表明,ChIP-chip数据可用于识别相互作用的结合位点基序。

可用性

基序发现程序和分析工具可根据作者要求提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验