Suppr超能文献

根据一组个体的d'估计总体或群体敏感性及其精度。

Estimating population or group sensitivity and its precision from a set of individual d'.

作者信息

Bi Jian

机构信息

Sensometrics Research and Service, Richmond, Virginia 23236, USA.

出版信息

Br J Math Stat Psychol. 2005 May;58(Pt 1):55-63. doi: 10.1348/000711005X38357.

Abstract

A commonly used method of estimating population sensitivity is the so-called averaged d' method. In this method, the arithmetic mean of a set of individual d' is usually taken as a population sensitivity estimator. This practice ignores the fact that the individual d' itself is an estimator with an inherent variance. For observations with different levels of precision, the arithmetic mean is not the best estimator of a population parameter. It may lead to an estimate with a large variation. Another fact, which is often ignored, is that the variance of individual d' involves both between- and within-subject variations in a random effects model when population sensitivity and its level of precision are estimated. Failing to account for both components of variance leads to an underestimate of variation and an overestimate of precision for the estimator. In this paper a lognormal distribution rather than a normal distribution is assumed for individual sensitivity. An iterative weighting procedure is proposed for estimating population sensitivity on the log scale on the basis of a random effects model. An ordinary weighting procedure is proposed for estimating group sensitivity on the log scale on the basis of a fixed effects model. The levels of precision of population and group sensitivity estimators are also given. Numerical examples illustrate the estimation procedures.

摘要

一种常用的估计总体敏感性的方法是所谓的平均d' 法。在这种方法中,通常将一组个体d' 的算术平均值作为总体敏感性估计值。这种做法忽略了个体d' 本身就是一个具有固有方差的估计量这一事实。对于具有不同精度水平的观测值,算术平均值并非总体参数的最佳估计量。它可能会导致估计值有较大的变化。另一个经常被忽略的事实是,当估计总体敏感性及其精度水平时,个体d' 的方差在随机效应模型中涉及个体间和个体内的变异。未能考虑方差的两个组成部分会导致对估计量的变异估计不足以及对精度估计过高。在本文中,假设个体敏感性服从对数正态分布而非正态分布。基于随机效应模型,提出了一种迭代加权程序用于在对数尺度上估计总体敏感性。基于固定效应模型,提出了一种普通加权程序用于在对数尺度上估计组敏感性。还给出了总体和组敏感性估计量的精度水平。数值示例说明了估计程序。

相似文献

5
Exact expressions for the bias and variance of estimators of the mean of a lognormal distribution.
Am Ind Hyg Assoc J. 1992 Jul;53(7):432-5. doi: 10.1080/15298669291359906.
6
The mean and variance of the selection differential after top-down selection from a mixture of normal samples.
Br J Math Stat Psychol. 2005 May;58(Pt 1):43-54. doi: 10.1348/000711005X38726.
8
Random left censoring: a second look at bone lead concentration measurements.随机左删失:对骨铅浓度测量的再审视。
Phys Med Biol. 2007 Sep 7;52(17):5369-78. doi: 10.1088/0031-9155/52/17/018. Epub 2007 Aug 16.
9
Estimating equations for association structures.关联结构的估计方程。
Stat Med. 2004 Mar 30;23(6):859-74; discussion 875-7,879-80. doi: 10.1002/sim.1650.
10
On mean-sigma estimators and bias.均值-标准差估计量与偏差。
Br J Math Stat Psychol. 2013 May;66(2):277-89. doi: 10.1111/j.2044-8317.2012.02048.x. Epub 2012 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验