Suppr超能文献

树木异速生长与热带森林碳储量及平衡的改进估算

Tree allometry and improved estimation of carbon stocks and balance in tropical forests.

作者信息

Chave J, Andalo C, Brown S, Cairns M A, Chambers J Q, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson B W, Ogawa H, Puig H, Riéra B, Yamakura T

机构信息

Laboratoire Evolution et Diversité Biologique UMR 5174, CNRS/UPS, bâtiment IVR3, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France.

出版信息

Oecologia. 2005 Aug;145(1):87-99. doi: 10.1007/s00442-005-0100-x. Epub 2005 Jun 22.

Abstract

Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.

摘要

热带森林储存着大量的碳,但它们对全球碳循环的定量贡献仍存在不确定性。一种量化碳生物量储存的方法是通过长期森林清查样地推断变化。回归模型用于将清查数据转换为地上生物量(AGB)的估计值。我们使用一个大型数据集,对热带地区27个研究地点直接采伐的2410棵直径≥5厘米的树木进行分析,对这些模型在不同热带森林类型中的质量和稳健性进行了批判性重新评估。构建了地上生物量与木材密度、树干横截面积和总高度乘积之间的比例关系。我们还开发了一个仅涉及木材密度和茎直径的回归模型。我们的模型在次生林和原始林中、在干燥、湿润和潮湿森林中、在低地和山地森林中以及在红树林中进行了测试。一棵树地上生物量的最重要预测因子,按重要性降序排列,是其树干直径、木材比重、总高度和森林类型(干燥、湿润或潮湿)。高估情况普遍存在,当对所有林分的误差进行平均时,偏差为0.5 - 6.5%。我们的回归模型可以可靠地用于预测广泛热带森林中的地上树木生物量。由于这些模型基于一个前所未有的数据集,它们应能提高热带生物量估计的质量,并就热带森林生物群落和热带森林砍伐对全球碳循环的贡献达成共识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验